Interactive Formal Verification (L21)
Exercises and Marking Scheme

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Michaelmas Term, 2020

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you
can complete in an hour, but you are not required to complete them: they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/, but they tend to be easy. The as-
sessed exercises are considerably harder, as you can see by looking at those
of previous years.

The handouts for the last two practical sessions determine your final
mark (50% each). For each assessed exercise, please complete the indicated
tasks and write a brief document explaining your work. You may earn addi-
tional credit by preparing this document using Isabelle’s theory presentation
facility.! Alternatively, write the document using your favourite word pro-
cessing package. Please ensure that your specifications are correct (because
proofs based on incorrect specifications could be worthless) and that your
Isabelle theory actually runs.

FEach assessed exercise is worth 100 marks.

e 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. FExcessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be. Sledgehammer
may be used, but multi-line sledgehammer proofs can be unreadable
and should not be presented in their raw form. Avoid inserting apply
commands before the proof keyword.

e 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could

!See section 4.2 of the Isabelle/HOL Tutorial, https://www.cl.cam.ac.uk/research/
hvg/Isabelle/dist /Isabelle2019/doc/tutorial.pdf.

http://isabelle.in.tum.de/exercises/
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2019/doc/tutorial.pdf
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2019/doc/tutorial.pdf

perhaps outline the strategic decisions that affected the shape of your
proof and include notes about your experience in completing it. Please
don’t copy the text of the exercises into your own write-up.

e The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some
apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
Taking the effort to make your proofs more readable can help. Even
better, strive for proofs that are direct and insightful; untidy or cir-
cuitous proofs and needless complexity can lose marks.

An exceptional write-up also gains a few marks in this category. Very
few students will gain more than half of these marks, but note that
85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
forbidden. Copying material found elsewhere counts as plagiarism. Here are
the deadline dates. Exercises are due at 12 NOON.

e 1st exercise: Wednesday, 4 November 2020
e 2nd exercise: Wednesday, 18 November 2020

For each exercise, submit both the Isabelle theory file and the accompanying
write-up by the deadline, using Moodle.

1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a = ’a = ’a list = ’a list"
Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: dell x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts dell :: "’a = ’a list = ’a list"
delall :: "’a = ’a list = ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "dell x (delall x xs) = delall x xs"

theorem "delall x (delall x xs) = delall x xs"

theorem "delall x (dell x xs) = delall x xs"

theorem "dell x (dell y zs) = dell y (dell x zs)"
theorem "delall x (dell y zs) = dell y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "dell y (replace x y xs) = dell x xs"

theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(dell x xs) = dell x (rev xs)"

theorem "rev(delall x xs) = delall x (rev xs)"

2 Power, Sum

2.1 Power
Define a primitive recursive function pow x n that computes z™ on natural
numbers.
consts
pow :: "nat => nat => nat"

Prove the well known equation ™™ = (z™)™:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural

numbers: sum(ny,...,ng] =ny + - + ng.
consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k — 1: Sum f k=
FO+-+ flk—1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + 1) = Sum f k + Sum whatever 1"

What is the relationship between powSum_ex.sum and Sum? Prove the fol-
lowing equation, suitably instantiated.
theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]
on lists in theory List.

3 Assessed Exercise I: Semantics of a Functional
Language

This exercise concerns a tiny functional programming language with a con-

ditional expression and an equality test. The language admits nonsensical

terms such as Succ T, but they do no harm. We prove some elementary
semantics theorems:

e cach evaluation step preserves the type and value of an expression

e a Church—Rosser property, that expression evaluation always leads to
a unique final result

We define the language’s abstract syntax as a datatype.
datatype exp = T | F | Zero | Succ exp | IF exp exp exp | EQ exp exp

We define a one-step semantics inductively. Note the three evaluation
rules for IF. For Succ x the only possibility is to reduce x, but for EQ x y
there are six possibilities. No order is imposed on which argument to reduce
first or even to ensure that one evaluation finishes before the other starts.

inductive Eval :: "exp = exp = bool" (infix "=" 50) where
IF_T: "IFTxy = x"
IF_F: "IFFxy= y"

IF Eval: "p = q =— IFpxy = IF q x y"
Succ_Eval: "x = y = Succ x = Succ y"
EQ_same: "EQ x x = T"

EQ_SO: "EQ (Succ x) Zero = F"

EQ_0S: "EQ Zero (Succ y) = F"

EQ_SS: "EQ (Succ x) (Succ y) = EQ x y"
EQ_Evall: "x = z =— EQ x y = EQ z y"
EQ_Eval2: "y = z = EQ x y = EQ x z"

The language has two types, for the booleans and the natural numbers.

datatype tp = bool | num

The typing relation is defined inductively. A conditional expression can
return a result of either type.

inductive TP :: "exp = tp = bool" where
T: "TP T bool"
| F: "TP F bool"
| Zero: "TP Zero num"
| IF: "[TP p bool; TP x t; TP y t] = TP (IF p x y) t"
| Succ: "TP x num —> TP (Succ x) num"
| EQ: "[TP x t; TP y t] = TP (EQ x y) bool"

Task 1 Define an evaluation function evl :: "exp = nat" mapping T to
one, F to zero, and is otherwise consistent with the evaluation relation (=).
Prove that it is well-defined as expressed by the following proposition.

[5 marks]

proposition value_preservation:
assumes "x = y" "TP x t" shows "evl x = evl y"

Task 2 Prove the following two results. The first concerns the value of a
boolean (as an integer), while type preservation is a key property expected
of any typed programming language. [10 marks]

lemma
assumes "TP x t" "t = bool" shows "evl x < 2"

proposition type_preservation:
assumes "x = y" "TP x t" shows "TP y t"

Task 3 The following claim is a form of Church—Rosser property. Find a
counterexample and briefly comment on the underlying cause. [5 marks]

lemma
assumes "x = y" "x = z" shows "Ju. y = u A z = u"

Task 4 Define mult-step evaluation, either inductively or otherwise, such
that x =x y holds provided there is a chain of zero or more =-steps from x
to y. Then prove the following two results: [10 marks]

proposition type_preservation_Star:
assumes "x =* y" "TP x t" shows "TP y t"

lemma Succ_EvalStar:

assumes "x =x* y" shows "Succ x =* Succ y"

Task 5 Prove the following Church—Rosser property. [20 marks]

proposition diamond:
assumes "x = y" "x = z" shows "Ju. y =% u A z =* u"

No proof should require more than 25 lines. It may help to use induc-
tive_simps and to prove some lemmas by induction.

4 Assessed Exercise II: Sums of Divisors

This exercise concerns some simple properties of the set of divisors of a natu-
ral number, as defined below. Note that an abbreviation is mathematically
equivalent to a definition but always expands mathematically.

definition divisors :: "nat = nat set" where
"divisors m = {n. n dvd m}"
abbreviation sigma :: "nat = nat" where

"sigma m = Y, (divisors(m))"

Task 1 As a warmup, prove the following simple consequences of the defi-
nitions. [2 marks]

lemma finite_divisors: "n>0 = finite (divisors n)"

lemma prime_divisors: "prime p «— divisors p = {1,p} A p>1"

Task 2 For a prime number we have divisors p = {1,p}. Prove the fol-
lowing lemma, concerning the situation when there exists a third divisor.
[5 marks]

lemma sigma_third_divisor:
assumes "1 < a" "a < n" "a dvd n"
shows "1+a+n < sigma(n)"

Task 3 The property sigma n = Suc n turns out to characterise the prime
numbers. Prove it. [15 marks]

proposition prime_iff_sigma: "prime n «— sigma(n) = Suc n"

Task 4 The divisors of p™ have the form p* for k <mn. Prove it. [3 marks]

lemma dvd_prime_power_iff:
fixes p::nat
assumes prime: "prime p"
shows "{d. d dvd p°n} = (k. p"k) ¢ {0..n}"

Task 5 Prove the following lemma, which will be useful below. [10 marks]

lemma prodsums_eq_sumprods:
fixes p :: nat and m :: nat
assumes '"coprime p m"

shows "> ((A\k. p°k) ¢ {0..n}) * sigma m
=>{pk*xblkb. k <n A b dvd m}"

Task 6 Conclude by proving this interesting distributive law for sigma.
[15 marks]
theorem

assumes "prime p" "coprime p m"
shows "sigma (p°n) * sigma m = sigma (p°n * m)"

	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Semantics of a Functional Language
	Assessed Exercise II: Sums of Divisors

