Structured prediction

L101: Machine Learning for Language Processing Andreas Vlachos

Structured prediction in NLP?

Given a piece of text, assign a *structured output*, typically a structure consisting of discrete labels

What could a structured output be?

- Sequence of part of speech tags
- Syntax tree
- SQL query
- Set of labels (a.ka. multi-label classification)
- Sequence of words (wait for the next lecture)
- etc.

Structured prediction in NLP is everywhere

Sequences of labels, words and graphs combining them

Structured prediction definition

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence):

$$\hat{y} = rg\max_{y \in \mathcal{Y}} score(x,y)$$

Where Y is rather large and often depends on the input (e.g. $L^{x/x}$ in PoS tagging)

Is this large-scale classification?

- Yes, but with many, many classes
- Yes, but with classes not fixed in advance
- Yes, but with dependencies between parts of the output

Depending on how much the difference is, you might want to just classify

Structured prediction variants $\hat{y} = rg\max score(x, y)$ $y \in \mathcal{Y}$ $\hat{y} = rg\max w \cdot \Phi(x,y)$ Linear models (structured perceptron) $u \in \mathcal{Y}$ Generative models (HMMs) $\hat{y} = rg \max P(x,y) = rg \max P(x|y)P(y)$ $y \in \mathcal{Y}$ $y \in \mathcal{Y}$ Discriminative probabilistic models $\hat{y} = rg \max P(y|x)$ (conditional random fields) $u \in \mathcal{V}$

Most of the above can use both linear and non-linear features, e.g. <u>CRF-LSTMs</u>

Structured perceptron

$$\hat{y} = rg \max_{y \in \mathcal{Y}} w \cdot \Phi(x,y)$$

We need to learn *w* from training data

$$D=\{(x^1,y^1),\ldots(x^M,y^M)\}$$

And define a joint feature map $\Phi(x,y)$.

Ideas for PoS tagging?

Structured perceptron features

Two kinds of features:

- Features describing dependencies in the output (without these: classification)
- Features describing the match of the input to the output

Feature factorization, e.g. adjacent labels:

$$\hat{y} = rgmax_{y \in \mathcal{Y}} w \cdot \sum_i \phi(x,i,y_i,y_{i-1})$$

Does this restrict our modelling flexibility?

Perceptron training (reminder)

Input: training examples $\mathcal{D} = \{(x^1, y^1), \dots, (x^M, y^M)\}$ Initialize weights w = (0, ..., 0)for $(x, y) \in \mathcal{D}$ do Predict label $\hat{y} = sign(w \cdot \phi(x))$ if $\hat{y} \neq y$ then Update $w = w + y\phi(x)$ end if end for

Learn compatibility between positive class and instance

Structured Perceptron training (<u>Collins, 2002</u>)

Input: training examples $\mathcal{D} = \{(x^1, y^1), \dots, (x^M, y^M)\}$ Initialize weights w = (0, ..., 0)for $(x, y) \in \mathcal{D}$ do Predict label $\hat{y} = \arg \max w \cdot \Phi(x, y) - \frac{\mathsf{Decoding}}{\mathsf{Decoding}}$ $u \in \mathcal{V}$ if $\hat{y} \neq y$ then Update $w = w + \Phi(x, y) - \Phi(x, \hat{y})$ Feature differences end if

end for

Compatibility between input and output Feature factorization accelerates both decoding and feature updating Averaging helps

Guess the features and weights (Xavier Carreras)

Training Data

LOC

LOC

Pacific

PER Maria is young LOC is Athens big PER. LOC Jack Athens went to LOC -Argentina is bigger PER PER Jack London went

Jack London went to South ORG - - ORG Argentina played against Chile

Some answers

Training Data

- PER Maria is young
- Athens is big
- PER - LOC
 Jack went to Athens
- Argentina is bigger
- ▶ PER PER - LOC LOC Jack London went to South Pacific
- ORG - ORG
 Argentina played against Chile

Weight Vector ${\bf w}$

 $w_{\langle LOWER,-\rangle} = +1$ $w_{\langle UPPER,PER\rangle} = +1$ $w_{\langle UPPER,LOC\rangle} = +1$ $w_{\langle WORD,PER,Maria\rangle} = +2$ $w_{\langle WORD,PER,Jack\rangle} = +2$ $w_{\langle NEXTW,PER,went\rangle} = +2$ $w_{\langle NEXTW,ORG,played\rangle} = +2$ $w_{\langle PREVW,ORG,against\rangle} = +2$

Decoding

Assuming we have a trained model, decode/predict/solve the argmax/inference:

$$\hat{y} = rgmax_{y \in \mathcal{Y}} score(x,y; heta)$$

Isn't finding θ meant to be the slow part (training)?

Decoding is often necessary for training; you need to predict to update weights

Do you know a model where training is faster than decoding?

Hidden Markov Models! (especially if you don't do Viterbi)

Can be exact or inexact (to save computation)

Dynamic programming

If we have a factorized the scoring function, we can reuse the scores (**optimal** substructure property), e.g.: $\hat{y} = \operatorname*{arg\,max}_{y \in \mathcal{Y}} w \cdot \sum_{i} \phi(x, i, y_i, y_{i-1})$

Thus changing one part of the output, doesn't change all/most scores

Viterbi recurrence:

- 1. Assume we know for position i the best sequence ending with each possible y_i
- 2. What is the best sequence up to position i+1 for each possible y_{i+1} ?

An instance of <u>shortest path finding in graphs</u>

Viterbi in action

Apart from the best scores (max), need to keep pointers to backtrace to the labels (argmax)

Higher than first order Markov assumption is possible, but more expensive

Conditional random fields

Multinomial logistic regression reminder:

$$P(\hat{y}=y) = rac{\exp(w_y\cdot\phi(x))}{\sum_{y'\in\mathcal{Y}}\exp(w_{y'}\cdot\phi(x))}$$

Conditional random field is a giant of the same type (softmax and linear scoring):

$$P(\hat{y}=y|x;w)=rac{\exp(w\cdot\Phi(x,y))}{\sum_{y'\in\mathcal{Y}^{|x|}}\exp(w\cdot\Phi(x,y'))}$$

The denominator is independent of *y*: needs to be calculated over all *y*s!

Often referred to as the partition function

Conditional random fields in practice

$$P(\hat{y}=y|x;w)=rac{\exp(w\cdot\Phi(x,y))}{\sum_{y'\in\mathcal{Y}^{|x|}}\exp(w\cdot\Phi(x,y'))}$$

Factorize the scoring function:

$$w \cdot \Phi(x,y) = w \cdot \sum_i \phi(x,i,y_i,y_{i-1})$$

Dynamic programming to the rescue again: forward-backward algorithm

This allows us to train CRF by minimizing the convex negative log likelihood: $w^{\star} = \operatorname*{arg\,min}_{w} \sum_{(x,y)\in D} log P(y|x;w)$ If you factorize the probability distribution: $P(\hat{y} = y|x;w) = \prod^{|x|} P(y_i|y_{i-1},x;w)$

If you factorize the probability distribution: $P(\hat{y} = y | x; w) = \prod_{i=1}^{i=1} P(y_i | y_{i-1}, x; w)$ Maximum Entropy Markov Models: train logistic regression, Viterbi at inference

Another overview!

Things we didn't cover

Latent variable structured prediction:

- Intermediate labels for which we don't have annotation
- Can be thought of as hidden layers in NN (they are trained via "<u>hallucinations</u>")

Constrained inference:

- Sometimes you can prune your search space (remove invalid outputs)
- Reduces the crude enumeration outputs but can make inference slower when using dynamic programming (e.g. <u>here</u> on enforcing valid syntax trees)
- <u>Dual decomposition</u> is often considered: split it into two (simpler) constrained inference problems and solve them to agreement

Bibliography

- <u>Kai Zhao's survey</u>: very useful for structured perceptron
- <u>Noah Smith's book</u>: good overview
- <u>Sutton and McCallum (2011)</u>: everything you wanted to know about conditional random fields
- Xavier Carreras's AthNLP2019 <u>slides</u> and <u>video</u>
- Michael Collins's <u>notes</u> on HMMs and Viterbi