Solutions to Information Theory Exercise Problems 10-14

Exercise 10

Y and Z are two continuous random variables.

—T

Y has an exponential probability density distribution p(z) over z € [0,00]: p(z) =e

Note that -
/ e Tdxr = [—efm]go =1.
0

Z has a uniform probability density distribution: p(z) =1/« for z € [0,q], else p(z) = 0.

Calculate the differential entropies h(Y) and h(Z) for these two continuous random variables, and
find the value of « for which these differential entropies are the same. Sketch these distributions.

Solution:

Differential entropy h for a probability density distribution p(x) is — / p(z)logy p(x) dx, so:

T

1

WZ) =~ [ 210, () do = % logy(a) = logy(a)

and
oo

h(Y) = —/ e “logy(e™ ") dx = logQ(e)/ xe ¥ dx
0 0

an integral which we can evaluate using integration-by-parts: / udv = uv — / vdu, with:

u=ux, dv=e*dr, v=—e%, du=dx, so:
[o.¢] 00 o0
/ ze P dr = [—ze™ 7], +/ e Pdr=1.
0 0

Thus we see that h(Z) = h(Y) when logy(a) = logy(e), or in other words, a = e = 2.718...

The following plot shows the two probability density distributions for Y and Z with equal differential
entropies:
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Exercise 11

(a) What does it mean for a function to be “self-Fourier?” Name three functions which are
of importance in information theory and that have the self-Fourier property, and in each case
mention a topic or a theorem exploiting it.

Solution:

(a) Functions are “self-Fourier” if they are identical in form to their own Fourier transforms.
Some are continuous, some are discrete, some are periodic, some are aperiodic. Examples and
their appearances in information theory include:

1. The comb function (a regular train of Dirac delta functions). The self-Fourier property of the
comb function is critical for the Nyquist Sampling Theorem. (Slides 136 — 145.)

2. Gaussian functions, which describe the probability distribution p(x) for a continuous signal’s
excursions z (from its mean) that gives it the maximum possible entropy h(p(z)) for any given
variance 0. This is important both in characterising the AWGN (Additive White Gaussian
Noise) channel, and in satisfying the requirement of “maximising the mutual information over
all possible input distributions” when deriving the capacity C of such a channel in Shannon’s
Noisy Channel Coding Theorem.

3. Gabor wavelets, which as encoders optimise joint information resolution simultaneously in
time and frequency under the fundamental (Heisenberg-Weyl-Gabor) Uncertainty Principle.
Any given area of the time/frequency “Information Diagram” (see Figure below) is maximally
resolved when populated by Gabor wavelets for detecting or resolving information.
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(b) Show that the set of all Gabor wavelets is closed under convolution, i.e. that the convolution
of any two Gabor wavelets is just another Gabor wavelet. [HINT: This property relates to the
fact that these wavelets are also closed under multiplication, and that they are also self-Fourier.
You may address this question for just 1D wavelets if you wish.]

Solution:

(b) The functional form of a 1D Gabor wavelet is:
f(x) = ef(x*IO)Q/OzQeiUJo(mfxo)

localised at “epoch” zy, modulated with frequency wg, and having a size or spread constant c.

Such wavelets have Fourier transforms F'(w) with the same functional form, but with the
parameters just interchanged:

F(w) _ e*(W*UJo)QaQe*iwg(UJ*wO)
It is algebraically obvious that the product of any two Gabor wavelets f(x) will still have the
functional form of a Gabor wavelet, because the contents of all the exponentials simply com-
bine additively. Therefore the product’s Fourier transform will also preserve this general form.

Hence (using the convolution theorem of Fourier analysis), it follows that the family of Gabor
wavelets are also closed under convolution.

(¢) Show that the family of sinc functions (for any \) used in the Nyquist Sampling Theorem,

sin(\x)
AT

sinc(x) =

is closed under convolution. Show further that when two different sinc functions are convolved,
the result is simply whichever one of them had the lower frequency, i.e. the smaller A.



Solution:

(¢) When two functions are convolved together, their Fourier transforms are just multiplied
together to give the Fourier transform of the result of the convolution. Conveniently, the Fourier
transform of any sinc function with frequency parameter \ is a (zero-centred) rectangular pulse
function recty (w) of width 2 (i.e. |w| < A) and 0 beyond. Multiplying two such pulse functions
together just creates yet another pulse function (ignoring amplitude scaling):

recty, (w) X recty,(w) = recty,(w)

and therefore the result of the convolution is again just a sinc function. But specifically,
because the product of the two pulse functions in frequency is simply whichever one of them was
narrower, the resulting sinc function is just whichever one had the smaller A (lower frequency):

)\3 = min{)\l, )\2}

Exercise 12

(a) Animportant class of complex-valued functions for encoding informa-
tion with maximal resolution simultaneously in the frequency domain
and the signal domain are Gabor wavelets. Using an expression for
their functional form, explain:

1. their spiral helical trajectory as phasors, shown here with
projections of their real and imaginary parts;

2. the Uncertainty Principle under which they are optimal;

3. the spaces they occupy in the Information Diagram; /

4. some of their uses in pattern encoding and recognition. “‘v Fv EE:

Solution:
(a) Their functional form can be expressed as: e~ (@=0)*/? gitwo (x—ao0) (okay to omit xg).

1. The second term is just a complex exponential with frequency wy, so it is a rotating phasor, but
the first term puts a Gaussian envelope on its amplitude. Thus it is a kind of localised tone-
burst with a well-defined epoch and frequency. In the complex coordinates shown it appears
briefly as a spiral helix then is seen no more.

2. The Uncertainty Principle expresses a trade-off between how well a function may be specified
in frequency and how well it may simultaneously be “localised” in the signal domain (say time
or space). Gabor wavelets achieve the lower bound on joint uncertainty in these two domains,
and in that sense they are optimal encoders of information.

3. The axes of the Information Diagram (as defined by Gabor) are time and frequency. The
wavelets occupy elliptical areas in this plane, and they may be elongated along either axis or
the other, but the area within these ellipses is always the same: 1/4w. That area is the lower
bound on joint uncertainty; hence their joint resolution is maximal.



4. Gabor wavelets are widely used for signal analysis, encoding, and recognition. Examples of such
applications areas include audio “speech spectrograms” and, generalised to two-dimensional
spatial form, image compression, visual encoding and pattern (e.g. iris) recognition.

(b) Explain why the real-part of a 2D Gabor wavelet has a 2D Fourier transform with two
peaks, not just one, as shown in the right panel of the Figure below.

2D Gabor Wavelet: Real Part

2D Fourier Transform
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Solution:

(b)

The real-part of a 2D Gabor wavelet, as shown in the figure, has the functional form

Fla,y) = e @4 cos(uga + voy)

But using the identity cos(f) = 1

3(e"” + e7%) we see that the expression above is actually half
the sum of two complex Gabor wavelets, namely

g(fL‘, y) = e—(x2/a2+y2/52) ei(qu+U0y)
and
h(x, y) = ei(xQ/a2+y2/ﬁ2)67'L’(U0$+U0y)

These each have a 2D Gaussian Fourier transform, one centred at (ug, v9) and the other centred
at (—ug, —vp), added together as seen in the figure.



Exercise 13

(a) Explain Logan’s Theorem about the richness of the zero-crossings in signals bandlimited
strictly to one octave, such as illustrated in the figure below. Name one intended application,
and at least one algorithmic difficulty, of Logan’s Theorem.
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zero—crossings pulse train

Next, consider instead an amplitude-modulated signal such as f(t) = [1 + a(t)] ¢(t), where ¢(t)
is a pure sinusoidal carrier wave and its modulating function is anything [1 + a(¢)] > 0. What
does Logan’s Theorem say about the information contained in the zero-crossings of f(¢)?

Solution

(a) Logan’s theorem asserts that if a signal is bandpass limited to one octave, so that the
highest frequency component Wy it contains is no higher than twice Wy, its lowest frequency
component, Wy < 2Wp, then merely listing the zero-crossings of this signal suffices for exact
reconstruction of the signal (up to a scale factor in amplitude), even in the continuous intervals
between those discrete zero-crossings.

An intended application was extreme compression of speech signals, to 1 bit, for telephony.
The zero-crossings are where the MSB (sign bit) changes, since the waveform is bandpass; and
indeed a pulse train of such “1-bit speech” is remarkably intelligible, albeit distorted.

Algorithmic difficulties include numerical instability: tiny changes in the position of an
extracted zero-crossing have divergent effects on signal reconstruction. A further limitation is
the inapplicability to computer vision. The zero-crossings of bandpass filtered images are not
discrete and countable, as they are for a 1D signal, but they form continuous “snakes.”

Obviously signals from (purely positive) amplitude-modulations of a carrier ¢(t), of the form
f(t) = [1 4 a(t)]c(t) where [1 + a(t)] > 0, will encode nothing about a(t) in the zero-crossings
of f(t): they will remain always just the zero-crossings of the carrier ¢(¢). Thus, “pure AM”
signals are excluded from Logan’s theorem, by a condition that the signal must have no complex
zeroes in common with its Hilbert transform.



(b) Compare and contrast the compression strategies deployed in the JPEG and JPEG-2000
protocols. Include these topics: the underlying transforms used; their computational efficiency
and ease of implementation; artefacts introduced in lossy mode; typical compression factors;
and their relative performance when used to achieve severe compression rates.

Solution

(b) The JPEG standard (published in 1994) uses the Discrete Cosine Transform (DCT) for
image compression. It divides up an image into a regular uniform grid of non-overlapping small
tiles, usually sized (8 x 8) pixels, and performs a DCT over each such tile. That operation in
itself does not reduce the amount of data: (8 x 8) pixels would generate 64 DCT coefficients.
However, compression arises because the DCT coefficients associated with high spatial frequen-
cies can be quantised (resolved) much more coarsely than lower frequencies without incurring
noticeable errors in image reconstruction. A quantisation table controls the relative severity
of this truncation of coefficient resolution. Because many high frequency coefficients end up
being 0 (after their quantisation into, say, just 4 possible values), their values are efficiently
encoded by run-length (RLE) codes when high frequency coefficients are read out in a group,
separate from lower frequencies. For most images (especially of natural scenes), compression
factors of 10:1 are preceived as “almost lossless” (although they are in fact lossy). Both com-
pression and decompression are easily implemented (the DCT is essentially just a subset of the
FFT), and executed at video frame-rates. However, at more severe compression rates, blocking
quantisation artefacts arise at the borders of each (8 x 8) tile which are very noticeable and
objectionable. This is because the image structure within each DCT tile may be represented
by just one, or just a few, chopped cosine waves.

JPEG-2000 by contrast uses the Discrete Wavelet Transform (DWT), with smoothly atten-
uating Daubechies wavelets. The absence of sharply truncated (“cliff edge”) tile boundaries,
and the overlapping, multi-scale nature of wavelet projections, avoids the block quantisation
artefacts of the JPEG DCT. Therefore, JPEG-2000 performs very much better than JPEG at
severe compression rates, such as 20:1 or 50:1. But despite the orthogonality of Daubechies
wavelets, the implementation of the DWT in JPEG-2000 is more complex than the DCT, (for
example, no closed-form analytic expression exists for the basis functions), and execution times
are slower, both for compression and decompression. The use of the JPEG-2000 protocol is not
yet commonplace, whereas JPEG is universally used.

(¢) Define the Kolmogorov algorithmic complexity K of a string of data, and say whether or
not it is computable. What relationship is to be expected between the Kolmogorov complexity
K and the Shannon entropy H for a given set of data? Give a reasonable estimate of K for a
fractal, and explain why it is reasonable. Discuss the following concepts in Kolmogorov’s theory
of pattern complexity: how writing a program that generates a pattern is a way of compressing
it, and executing such a program decompresses it; Kolmogorov incompressibility, and patterns
that are their own shortest possible description.



Solution:

(¢) Kolmogorov defined the algorithmic (or descriptive) complexity K of a pattern (or sequence
of data) as the length of the shortest binary program that could generate it or fully describe
it. Thus, the data’s Kolmogorov complexity is its “Minimal Description Length.” Writing such
a program amounts to “compressing” the pattern, if the program is shorter than the pattern;
and executing that program “uncompresses” it, by recovering the pattern. A remarkable result
is that Shannon entropy H and Kolmogorov complexity K for long random stings should be
asymptotically roughly equal: K ~ H.

Because fractals can be generated by extremely short programs, namely iterations of simple
recursive mappings, such patterns have Kolmogorov complexity of nearly K ~ 0 despite their
apparently unlimited complexity across unlimited scales. Some patterns cannot be generated
by programs except those that contain the pattern itself in a data statement; those are said
to be Kolmogorov incompressible, and to be their own shortest possible description. A truly
random sequence should be Kolmogorov incompressible. Unfortunately, finding the shortest
possible description of a pattern is uncomputable (how could one be sure?).




Exercise 14

(a) Define the genetic isopoint of a human population.
(b) For most Europeans today, in what Century did it occur?

(¢) For a large well-mixed population of size m, approximately how many generations N ago can
be estimated as its genetic isopoint?

(d) Regarding genetic transmission as a lossy information channel, what sampling fact becomes
critical for the effect of an ancestor once a family tree extends back at least N = 15 generations?

(e) What can we infer is achieved by sexual (as opposed to asexual) reproduction?

Solution:

(a) The genetic isopoint is the most recent time in history when it is highly likely that everyone
who has descendants today) is an ancestor of everyone now.
Y )

(b) For most Europeans today, this happened in the 10th Century.

(¢) For a large well-mixed population of size m, the genetic isopoint is estimated as about
N ~ 1.77logy(m) generations ago.

(d) The probability that a given ancestor in your family tree has transmitted even a single gene
(non Y-chromosome) to you via the lossy genetic “information transmission channel” falls to about
0.6 (and continues falling by factors of two) once you go back N = 15 generations or more, because
you have got only about 20,000 genes but then 2'5 = 32, 768 ancestors.

(e) From the standpoint of Information Theory, the point of sexual reproduction is the constant
mixing, and re-mixing, of the gene pool. How we “sample” it (via mate selection) would be irrelevant,
except that the snapshot is dominated by the latest N generations as a 2~ distribution.



