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Warning about terminology and notation

The field of model checking is a terminological and notational
nightmare.

In violation of the Countryside Code, we leave the field in a state
worse than the one we found it in.

We also write meta-level and object-level constructors with the
same symbols when not ambiguous.
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Model checking

desired goalartefact

L10

temporal model M
L7 specification ψ

in temporal logic
L8

L9

OK (M � ψ) | NO (+maybe a counterexample)

human

expert

model

checker

L11

This diagram gives a very static, top-down picture, but it is the
feedback that provides the value.

3



Example

Suppose we are given an algorithm that is supposed to transfer,
from one bank of the Cam to the other, using only a punt with
seat for one, a wolf, a goat, and a cabbage1.

The success criteria are

• safety: the cabbage and the goat, and the wolf and the goat,
cannot be left alone on a bank;

• liveness: all three items are moved to the other bank.

1it is a large cabbage, so it takes up the whole seat
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Example

How to model the problem?

• Option 1:

L = −1
4FµνFµν + iψ̄�Dψ + h.c.+ ψ̄iyijψjφ+ h.c.+ |Dµφ|2 − V (φ) + ???

• Option 2: (G. Doré, anonymous (Wellcome coll.), G. Waddington)

• Option 3: (apologies to the Phaistos cat)

Side ::= ·s | s· Item ::=l |d |c |Y
State def

= Item → Side
. . .

5

How to find good models

A pretty good model of the
solar system
Encyclopédie, Diderot, d’Alembert, et al.

The need to go beyond exces-
sively simple models
Flammarion engraving, anonymous

“All models are wrong, some are useful” applies. The designer
must ensure the model captures the significant aspects of the real
system. Achieving it is a special skill, the acquisition of which
requires thoughtful practice
— How Amazon Web Services Uses Formal Methods 6

Temporal models

A temporal model over atomic propositions AP is a left-total
transition system where states are labelled with some of AP , and
where some states are distinguished as initial:

M, . . . ∈ TModel def
=

(S ∈ Set)× states
(S0 ∈ sub S)× initial states
(À T Á ∈ relation S S)× transition
(` ∈ S → sub AP)× state labelling
(∀s ∈ S. ∃s ′ ∈ S. s T s ′) left-total

Elements of S are denoted s.

� We interpret not being labelled as a lack of information, not as
a negation.
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Temporal model of traffic lights

AP ::= | | | | |

{ , , }

{ , , }

{ , , }

{ , , }
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Temporal model of Cambridge weather
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Temporal models of indicating

AP ::= | | |

{ , }

{ , }

{ , }

{ }

{ , }

{ }

{ }

Mhighway code MCambridge M◦◦◦◦
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Milner’s tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

Mnice Mbad
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Corner case: the initial temporal model

0 ∈ TModel

0
def
=

〈
0,

∅,
∅,
s 7→ ∅,
. . .

〉
(it is empty)
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Corner case: the terminal temporal model

1 ∈ TModel

1
def
=

〈
AP → B,
{s | >} ,
{s0, s1 | >} ,
s 7→ {p | s p} ,
. . .

〉
∅

{p1}

{p2} {p1, p2}

{p3}

{p1, p3}

{p2, p3}{p1, p2, p3}

. . .
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Temporal model of a terrible punter

A punter with no concern for goat welfare or cabbage welfare:

AP = State

M =

〈
State,{

s
∣∣∣ ∀i . s i = ·s

}
,{

s, s ′
∣∣∣∣∣

(
s Y = flip (s ′ Y) ∧
(moveone s s ′ ∨ movezero s s ′)

)}
,

s 7→ {i | s = i} ,
. . .

〉
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Temporal model of a terrible punter

flip ·s def
= s· flip s· def

= ·s

moveone s s ′ def
=



aux s s ′ ldc ∨
aux s s ′ dlc ∨
aux s s ′ cld




aux s s ′ a b c def
=

(
s a = s Y ∧ s ′ a = s ′ Y ∧
s ′ b = s b ∧ s ′ c = s c

)

movezero s s ′ def
= s l = s ′ l ∧ s d = s ′ d ∧ s c = s ′ c
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Temporal model of a terrible punter

ldcYs

ldcsY

ldYsc

ldscY

lcYsd

lcsdY

lYsdc

lsdcY

dcYsl

dcslY

dYslc

dslcY

cYsld

csldY

Ysldc

sldcY

Safety: we never go through a red state.
Liveness: we eventually reach the blue state.
Both are pretty clearly false! :-(
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Informal temporal model of an elevator

Let us try to describe how an elevator
for a building with 3 levels works:

• it starts at the ground floor,
with the door closed, and goes
back there when it is not called;

• if going through a level where it
is called, it stops there and
opens its door;

• . . .

Textual descriptions do not scale very well.
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Temporal model of an elevator: statics and specification

Direction ::= home | up | down
Level ::= 0 | 1 | 2
Location ::= 0 | 1/2 | 1 | 3/2 | 2
Called def

= Level → B
DoorStatus ::= open | closed
ElevatorStatus def

= Direction × Location × Called × DoorStatus

Desired goals:

• the door is not open at half-levels;
• if the elevator is called to a level, then it eventually gets there;
• the elevator does not lock people in;
• the path of the elevator is not entirely idiotic.
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Temporal model of an elevator: partial dynamics

start

open door going up

moving up reopen door

arrived

open door

going down

moving down . . .

call 0time call 1

time call 0

time
time

time

time

time

time
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Temporal model of an elevator: complete (?) dynamics
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How to have any confidence that this is correct? house by Petr Olsšák
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Definitions

(Infinite) Paths

stream ∈ Set → Set
π, . . . ∈ stream A def

= N → A

IsPath ∈ (M ∈ TModel) → stream M�S → Prop
IsPath M π

def
= ∀n ∈ N. (π n) M�T (π (n + 1))

Path ∈ TModel → Set
Path M def

= (π ∈ stream M�S)× IsPath M π

21

Reachable states & the tail operation

Because the transition relation is left-total, these infinite paths are
“complete”, in the sense that they capture reachability:

Reachable ∈ (M ∈ TModel) → M�S → Prop
Reachable M s def

= ∃π ∈ stream M�S, n ∈ N.
IsPath M π ∧ M�S0 (π 0) ∧ s = π n

tailn ∈ (A ∈ Set) → N → stream A → stream A
tailn A n π def

= i 7→ π (i + n)

22



Stuttering

A temporal model is stuttering when all states loop back to
themselves:

stuttering ∈ TModel → Prop
stuttering M def

= ∀s ∈ M�S. s M�T s

� If the temporal model is not stuttering, then we can count
transitions. This is only sound if they exactly match those of the
system being analysed.

See “What good is temporal logic” §2.3, by Leslie Lamport
https://lamport.azurewebsites.net/pubs/what-good.pdf
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More abstract temporal model of traffic lights

Somewhat unusually, we do not interpret a state not being labelled
with a given label as that state being labelled with the negation of
that label.

AP ::= | |

{ }

{ , }

{ }

{ }

This model does not record which lights are off.

24

Applications of model checking

Applications of model checking

• Hardware:
• circuits (with memory) directly translate to temporal models
• lots of protocols

• cache protocols
• bus protocols
• . . .

their specification involves lots of temporal “liveness”
(“eventually something good”) properties

• Software: often not finite a priori, but “proper modelling”, or
bounded model-checking

• Security protocols
• Distributed systems
• . . .

The common denominator of many of these is the “killer app” of
model checking: concurrency.

25



Examples

In the rest of this lecture, we will sketch how some of these are
approached.

The point is not the details of any individual temporal model, but
the overall approach.
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Temporal model from operational
semantics

Temporal model from operational semantics

An initial configuration for a small-step operational semantics
naturally leads to a temporal model: take

• configurations as states,
• the initial configuration as the (only) initial state,
• steps as transitions, and
• some interesting properties as atomic propositions, for

example

X ,Y ,Z , . . . ∈ Var
v ∈ Z
AP ::= X ·

= v | X ·
= Y | X

·
< Y |

X
·
+ Y

·
< Z | X

·
× Y

·
< Z |

. . .
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Temporal model from operational semantics

For example, for a language with a concurrent composition with
interleaving dynamics (as in lecture 6):

〈C1||C2||C3, sa〉

〈C ′
1||C2||C3, sb〉

〈C1||C ′
2||C3, sc〉

〈C1||C2||C ′
3, sd〉

〈C ′
1||C2||C ′

3, se〉
〈C ′′

1 ||C2||C3, sf 〉
〈C ′

1||C ′
2||C3, sg〉

〈C ′
1||C ′

2||C3, sh〉
〈C1||C ′′

2 ||C3, si〉
〈C1||C ′

2||C ′
3, sh〉

〈C1||C ′
2||C ′

3, sk〉
〈C1||C2||C ′′

3 , sl〉
〈C ′

1||C2||C ′
3, sm〉

. . .

28



Dealing with the size of temporal model from operational se-
mantics

These temporal models are very often infinite or intractably large!

Many approaches:

• bounded model checking (see lecture 9):
• assume (and possibly check whether) loops execute no more

than n times
• consider executions of length smaller than n
• . . .

• use a model checking DSL to write an idealised version of the
program (see lecture 9)

• use abstraction (see lecture 10)
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Temporal model from circuits

Example circuit

Synchronous (the clock is left implicit) counter that goes
0, 1, 2, 0, 1, 2, . . . (assuming all registers are initially 0):

nor

r1

r0

x1

x0

Registers make the circuit not be a simple function, which
motivates using a temporal model.

30

Example circuit temporal model

The states of the temporal model are the state of the registers,
and the labels are which registers are set to 1:

∅ {r0}

{r1}{r0, r1}

Safety: The state {r0, r1} should never be reached.
Liveness: all other states should be visited infinitely often.

31



Difference circuit

Given two circuits C1,C2 ∈ SCircuit i 1, we can define their
difference circuit C1 � C2:

...

... C1

... C2

If the answer is always 0, then they are equivalent (see lecture 10).
The typical use case is to have a simple, clearly correct C1, and a
complex C2 to verify.

32

Temporal models of distributed
algorithms

Temporal models of distributed algorithms

Nodes in distributed algorithms
are often specified in terms of in-
teracting automata; the temporal
model directly results from their
interaction.

See IB Concurrent and Dis-
tributed Systems

Distributed Algorithms, by Nancy Lynch.

33

Models of cache algorithms



Models of cache algorithms

Cache algorithms are also often
specified in terms of interacting
automata (they are distributed
algorithms too).

See Section 21.5.2.1 German’s
Protocol in the Handbook of
Model Checking.

Computer Architecture: A Quantitative Approach,
by Hennessy & Patterson.
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Models of security protocols

Models of security protocols

Given a security protocol, define a temporal model where a state
contains:

• the state of each agent
• the set of messages sent
• the set of all the messages that can be deduced from the

messages sent; this includes taking messages apart, and
reassembling them, including via hashing or encrypting using
known keys

and where there is a transition from one state to another when

• an agent sends a message
• an adversary sends a deducible message to an agent

See Chapter 22 Model Checking Security Protocols, in the Handbook of Model

Checking. 35

Remark on examples

As illustrated, interesting programs are big, often too big to work
on by hand.

This is why we use model checkers, but it also means we cannot
easily work with these examples.

Instead, we will mostly look at games and puzzles like the
cabbage-goat-wolf puzzle.

36



Summary

Temporal models make it possible to describe systems that evolve
in time.

Temporal models can be extracted directly, for example from
circuits, or hand-crafted to capture the relevant parts of an
artefact.

In the next lecture, we will see how to use temporal logic(s) to
specify the behaviour of temporal models.
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Recap

In the previous lecture, we saw how temporal models can be used
to model various systems.

In this lecture, we will look at how temporal logic can be used to
specify the behaviour of temporal models.

1

Why not use first-order logic?

Why not model time explicitly in first-order logic with equality
and <, and have variables represent time points?

For example:

∀t1. p(t1) ⇒ (∃t2. t1 < t2 ∧ q(t2))

D It works.
D It has a well-understood theory.
% It is very error-prone.
% Is is very expensive to check.

2



Paths and states

Two intuitive things to consider: states, and paths.

• CTL∗ allows both,
• CTL (computation tree logic) focuses on states,
• LTL (linear temporal logic) focuses on paths.

When using model checking, one generally picks (a language based
on) either LTL or CTL.
To describe model checking, CTL∗ makes things clearer.

We will first focus on the implication-free fragment.

3

Syntax of the implication-free fragment of CTL∗

Given a fixed set of atomic propositions AP ,

ψ, . . . ∈ StateProp ::= φ, . . . ∈ PathProp ::=

⊥ | false
> | true
ψ1 ∧s ψ2 | conjunction
ψ1 ∨s ψ2 | disjunction
injp p | atomic predicate
A φ | universal
E φ existential

φ1 ∧p φ2 | conjunction
φ1 ∨p φ2 | disjunction
injs ψ | state property
X φ | next
F φ | future
G φ | generally
φ1 U φ2 until

We almost always omit injp and injs.

4

Informal semantics of the implication-free fragment of CTL∗

• injp p: the current state satisfies atomic proposition p
• A φ: all paths starting from the current state satisfy φ
• E φ: some path starting from the current state satisfies φ
• injs ψ: the first state of the current path satisfies ψ
• G φ: every suffix of the current path satisfies φ
• F φ: some suffix of the current path satisfies φ
• X φ: the tail of the current path satisfies φ
• φ1 U φ2: some suffix of the current path satisfies φ2, and all

the suffixes of the current path of which that path is a suffix
satisfy φ1

5

Example propositions in the implication-free fragment of CTL∗

• E (F (injs (injp p))): there is a state reachable from the
current state that satisfies atomic proposition p

• E (F (injs (injp p ∧s injp q))): there is a state reachable from
the current state that satisfies both atomic proposition p and
atomic proposition q

• (E (F (injs (injp p)))) ∧s (E (F (injs (injp q)))): there is a
state reachable from the current state that satisfies atomic
proposition p, and a reachable state that satisfies proposition
q

• E ((F (injs (injp p))) ∧p (F (injs (injp q)))): there is a path
from the current state, along which there is a state satisfying
atomic proposition p, and a state satisfying atomic
proposition q

• E (X (injs (injp p))): there is a successor state satisfying
atomic proposition p 6



Example propositions in the implication-free fragment of CTL∗

• A (G (injp p)): p always holds (in any path)

• E (G (injp p)): there is one path where p always holds

• A (G (A (F (injp idle)))): the tea & coffee machine always
goes back to an idle state

• A (F (A (G (injp broken)))): the tea & coffee machine ends
up permanently broken

7

Path conjunction vs. state conjunction

• E (F (injs ((injp p) ∧s (injp q)))): there is a state that is
reachable from the current state and that satisfies both p and
q

• E ((F (injs (injp p))) ∧p (F (injs (injp q)))): there is a state
that is reachable from the current state and that satisfies p,
and a state reachable that is reachable from the current state
and that satisfies q

8

Example of path conjunction vs. state conjunction

“At Cambridge, you can row and study”

Mpessimistic

∅

{
Y

} {
P

}

Moptimistic

∅

{
P,Y

}

Mrealistic

∅

{
Y

} {
P

}

9

Semantics of the implication-free fragment of CTL∗

We define whether M satisfies ψ,

À � Á ∈ TModel → StateProp → Prop
M � ψ def

= ∀s ∈ M�S. M�S0 s → s �M ψ

using two auxiliary mutually inductive predicates

Á �s
À

Â ∈ (M ∈ TModel) → M�S → StateProp → Prop
Á �p

À Â ∈ (M ∈ TModel) → stream M�S → PathProp → Prop

We write the arguments that remain constant through recursive
calls in this shade of grey blue.

10



Semantics of the implication-free fragment of CTL∗:
state properties

s �s
M > def

= >
s �s

M ⊥ def
= ⊥

s �s
M ψ1 ∧s ψ2

def
=
(
s �s

M ψ1
)
∧
(
s �s

M ψ2
)

s �s
M ψ1 ∨s ψ2

def
=
(
s �s

M ψ1
)
∨
(
s �s

M ψ2
)

s �s
M injp p def

= M�` s p

s �s
M A φ

def
=

(
∀π ∈ stream M�S.

IsPath M π → π 0 = s → π �p
M φ

)

s �s
M E φ

def
=




∃π ∈ stream M�S.
IsPath M π ∧ π 0 = s ∧
π �p

M φ




11

Semantics of the implication-free fragment of CTL∗:
path properties

π �p
M injs ψ def

= (π 0) �s
M ψ

π �p
M φ1 ∧p φ2

def
=
(
π �p

M φ1
)
∧
(
π �p

M φ2
)

π �p
M φ1 ∨p φ2

def
=
(
π �p

M φ1
)
∨
(
π �p

M φ2
)

π �p
M X φ

def
= (tailn M�S 1 π) �p

M φ

π �p
M F φ

def
= ∃n ∈ N. (tailn M�S n π) �p

M φ

π �p
M G φ

def
= ∀n ∈ N. (tailn M�S n π) �p

M φ

π �p
M φ1 U φ2

def
=

∃n ∈ N.



(
∀k ∈ N. 0 ≤ k < n → (tailn M�S k π) �p

M φ1
)
∧

(tailn M�S n π) �p
M φ2



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Moving goats

If we extend our atomic propositions to include fine-grained
descriptions of the different items, we can write:

Safe ∧s Live
Safe def

= A (G StateSafe)
Live def

= A (F (Done))
StateSafe def

=l-Safe ∧s d-Safe

l-Safe def
=

(
ldYs

)
∨s
(
sldY

)
∨s

(
lsd

)
∨s
(
dsl

)

d-Safe def
= . . .

Done def
= sldcY

We can also express the fact that the puzzle has a solution with

E ((G StateSafe) ∧p (F Done))
13

Informal specification of indicating

Rule 103
Signals warn and inform other road users, including pedestrians
([. . .]), of your intended actions. You should always

• give clear signals in plenty of time, having checked it is not
misleading to signal at that time

• use them to advise other road users before changing course or
direction, stopping or moving off

• [. . .]

14



Formal specification of indicating

A (G ( ∨ ( U )))

A G (SpecSN ∨p SpecSI ∨p SpecTI)
SpecSN = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

SpecSI = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

SpecTI = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

If we want to allow cancelling: make the RHS of until in SpecSI
have . . . ∨s ( ∧s ).
If we want to allow driving straight forever: make the RHS of
SpecSN have . . . ∨s G ( ∧s ); similarly for turning forever.

15

Implication

Unstable assertions

It may be more natural to use the following:

A (G ( → ))

A (G ((E (X )) → ))

but implication is not stable under abstraction.

We can add implication (and thereby negation) to our temporal
logic:

D more intuitive,
% more brittle: it conflates not being labelled with p with being

labelled with ¬p, and thus does not respect abstraction.

16

Syntax of CTL∗ with implication

StateProp ∈ Set
ψ, . . . ∈ StateProp ::=

⊥ | > | ¬s ψ | ψ1 ∧s ψ2 | ψ1 ∨s ψ2 | ψ1 →s ψ2 |
injp p | A φ | E φ

PathProp ∈ Set
φ, . . . ∈ PathProp ::=

¬p φ | φ1 ∧p φ2 | φ1 ∨p φ2 | φ1 →p φ2 |
injs ψ | X φ | F φ | G φ | φ1 U φ2

17



Splitting

Checking a full CTL∗ property can be reduced to checking an
implication-free CTL∗ property.

To do so, we need to represent the fact that an atomic proposition
can be negated.
We do this by having two versions of each atomic property p:
⊕p corresponds to p, and 	p corresponds to ¬p:

Inductive split (AP ∈ Set) ∈ Set :=
| ⊕← ∈ AP → split AP
| 	← ∈ AP → split AP

18

Fragments

Fragments

Fragments of CTL∗: CTL, LTL, ACTL∗, ECTL∗, ...

19

Fragments: CTL



CTL

CTL restricts CTL∗ so that path quantifiers and temporal
operators always come together:

ψ, . . . ∈ StateProp ∈ Set ::=
⊥ | > | ¬s ψ |
ψ1 ∧s ψ2 | ψ1 ∨s ψ2 | ψ1 →s ψ2 |
injp p | A φ | E φ

φ, . . . ∈ PathProp ∈ Set ::=
X (injs ψ) | F (injs ψ) | G (injs ψ) | (injs ψ1) U (injs ψ2)

20

Limits of CTL

¬
(

∀p ∈ AP .∃ψCTL ∈ StatePropCTL.

∀M ∈ TModel. (M � F (G p)) ↔ (M � ψCTL)

)

21

Fragments: LTL

LTL

LTL restricts CTL∗ so that properties are only (universally
quantified) path properties:

ψ, . . . ∈ StateProp ::= A φ

φ, . . . ∈ PathProp ::=

¬p φ | φ1 ∧p φ2 | φ1 ∨p φ2 | φ1 →p φ2 |
injs-injpWI p | X φ | F φ | G φ | φ1 U φ2

The leading A is kept implicit.

22



Limits of LTL

LTL cannot express things like “whenever p holds, it is possible to
reach a state where q holds”:

¬




∀AP ∈ Set.∀p, q ∈ AP . ∃ψLTL ∈ StatePropLTL AP .
∀M ∈ TModel AP .
(M � A (G (p → E (F q)))) ↔ (M � ψLTL)




23

CTL vs. LTL: Milner’s tea & coffee machines

These can be used to tell the difference between CTL (can
distinguish) and LTL (cannot distinguish), because their difference
is about their branching structure

24

Limits of CTL∗

CTL∗ cannot express things like “p holds at even steps”.

CTL∗ also has lots of moving parts. The linear µ-calculus (itself a
special case of the modal µ-calculus) is more expressive than
CTL∗, and has far fewer moving parts, but is quite fiddly.

25

ACTL∗ and ECTL∗

The universal fragment of CTL∗, ACTL∗, where all E are under
odd numbers of negations, and all A are under even numbers of
negations, is well-behaved with respect to abstraction (see lecture
11).

ACTL∗ contains LTL, and ACTL, the intersection of ACTL∗ and
CTL.
ACTL∗ is dual (for the negation operation) to the existential
fragment of CTL∗, ECTL∗.

26



Quantifiers

Unlike in Hoare logic, there are no quantifiers, as they would make
it difficult to mechanically check properties.

To make up for this, we can use property schemas with big
operators or bounded quantifiers, and indexed atomic propositions,
which stand for the expanded property.

For example
n∧

i=0
pi , for n = 3, is expanded to p1 ∧ p2 ∧ p3.

So is
∧

i∈S
pi , for S = {1, 2, 3}.

This is is not as general as quantifiers, as the value of n or S has
to be known. Because this is done as a preprocessing phase, and
does not change the language of properties.

27

Summary

Temporal logics can be used to specify temporal models.

In the next lecture, we will look at how model checking is used in
practice.
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Relating temporal models

concrete model

abstract model

1



Relating temporal models

The premise of model checking is that checking the model
translates to confidence in the modelled artefact.

If we can express the artefact as a temporal model too, and if the
abstract model can simulate the concrete model, then we can
check some classes of properties on the abstract model and know
that they hold of the concrete model.

However, discarding the unimportant aspects the the artefact is
also a crucial aspect of modelling.

2

Abstraction of traffic lights by some Cambridge taxi drivers

AP ::= • | • | •

{•}

{•, •}

{•}

{•}

{•}

M M#

...still, another crucial aspect of modelling is to not discard the
crucial aspects of the artefact.

3

Temporal model simulation 1/2

R is a temporal model simulation of M by M ′:

À 4Â
Á ∈ (M ∈ TModel) → (M ′ ∈ TModel) →

(M�S → M ′�S → Prop) → Prop
M 4R M ′ def

=

(1) R is consistent with labels:
(

∀s ∈ M.S, s ′ ∈ M ′�S.
s R s ′ → ∀p ∈ AP .M ′�` s ′ p → M�` s p

)
∧

(2) R relates initial states of M to initial states in M ′:

(∀s ∈ M�S.M�S0 s → ∃s ′ ∈ M ′�S.M ′�S0 s ′ ∧ s R s ′) ∧

(continued on the next slide)

4

Temporal model simulation 2/2

(3) any step in M can be matched by a step in M ′ from any
R-related start state to some R-related end state:



∀s0, s1 ∈ M�S, s ′0 ∈ M ′�S.
s0 M�T s1 ∧ s0 R s ′0 →
∃s ′1 ∈ M ′�S.

s ′0 M ′�T s ′1 ∧ s1 R s ′1




s0

s1

s ′0

M�T →

R

∃s ′1.

s0

s1

s ′0

s ′1

M�T M ′�T

R

R

5



Examples of simulations

The identity relation is a simulation:

∀M ∈ TModel.
let R = (s 7→ s) in
M 4R M

The terrible punter (lecture 1) can simulate the good punter
(lecture 3) by, when it has a choice of things, doing a good thing.

6

Examples of simulations

{even}

{odd}

{even}

{odd}

{even}

{odd}
...

{even}

{odd}

M M ′R

7

Milner’s tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

MniceMbad

8

Temporal model simulation

Often, the details of the simulation are not so important, what
matters is the existence of a simulation:

À 4 Á ∈ TModel → TModel → Prop
(M 4 M ′)

def
= ∃R .M 4R M ′

It means that M ′ is “more abstract” than M: it may have more
behaviour, making it less precise, but that allows it to have
possibly fewer states and transitions.

9



Simulation preserves ACTL∗

The universal, implication-free fragment of CTL∗, ACTL∗IF, is
compatible with the simulation preorder:

∀M ∈ TModel,M ′ ∈ TModel, ψ ∈ StatePropACTL∗IF.

(M 4 M ′ ∧ us ψ ∧ M ′ � ψ) → M � ψ

(where us ψ means ψ is a universal state property)

It suffices to show the property holds of the more abstract model
to know it holds of the more concrete model.

This property can seem strange, because F φ has an existential feel to it. In fact, it is

very fragile, and really depends on left-totality!

10

Temporal model bisimulation

R is a temporal model bisimulation of M by M ′:

À ≈Â
Á ∈ (M ∈ TModel) → (M ′ ∈ TModel) →

(M�S → M ′�S → Prop) → Prop
M ≈R M ′ def

= M 4R M ′ ∧ M ′ 4R M

As for simulations, the details of the bisimulation are not so
important, often what matters is the existence of a bisimulation:

À ≈ Á ∈ TModel → TModel → Prop
(M ≈ M ′)

def
= ∃R .M ≈R M ′

11

Bisimulation preserves CTL∗

All of CTL∗ is compatible with bisimulation equivalence:

∀M ∈ TModel,M ′ ∈ TModel, ψ ∈ StatePropWI.

M ≈ M ′ → (M � ψ ↔ M ′ � ψ)

12

Bisimulation and simulations

Bisimulation implies simulations in both directions

M ≈ M ′ → (M 4 M ′ ∧ M ′ 4 M)

� but in general not the other way around!

For example, on a variation of the tea & coffee machines example:

∅

{£}

{ }

∅

{£} {£}

{ }

13



Revisiting stuttering

What if we want to abstract multiple steps of the concrete model
with one step of the abstract model?

; We can change our notion of path to allow staying any finite
number of times in any state (in addition to allowing forever on
states with self-loops).

We can then adapt most of the notions we have seen so far.
However, in this setting, we do not want to use the X temporal
operator.

This is the approach taken by TLA+.

14

Summary

We saw how abstraction can be used to relate temporal models in
a way that makes checking some classes of properties sound.

...but remember an important part of modelling is judicious
under-approximation! ; domain knowledge is crucial.

In the next lecture, we will look at how to implement model
checking.
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Definite temporal models

For the model checker to be effective, the input temporal model
needs to be effective.

A definite temporal model:

DTModel ∈ Set
DM, . . . ∈ DTModel def

=

(S ∈ Set)×
(F ∈ Fintype S)×
(S0 ∈ S → B)×
(À T Á ∈ S → S → B)×
(` ∈ S → AP → B)×
(∀s ∈ S. ∃s ′ ∈ S. s T s ′ = >B)

1



Specifying a CTL model checker

We will see how to implement the world’s worst CTL model
checker:

mc ∈ (AP ∈ Set) → DTModel AP → StatePropCTL AP → B

which has the following specification:

∀AP ∈ Set,DM ∈ DTModel AP , ψCTL ∈ StatePropCTL AP .
reflect (mc AP DM ψCTL) (DM �WI

AP ψCTL)

where satisfaction in a definite model is as expected.

2

Defining a CTL model checker

To check whether the model satisfies a property, it suffices to
check whether all the initial states satisfy the property, which we
check using an auxiliary function mca that checks whether a state
satisfies a given property.

mc AP DM ψCTL def
=

forall-fin DM�S (s 7→ DM�S0 s →B mca DM ψCTL s)

mca ∈ (AP ∈ Set) → (DM ∈ DTModel AP) →
StatePropCTL AP → (DM�S → B)

This mca function works by recursion on the proposition, calling
itself on the sub-propositions.

3

CTL model checker: propositional fragment

mca AP DM p def
= s 7→ DM�` s p

mca AP DM (¬̂φCTL)
def
= let V = mca AP DM φCTL in

s 7→ ¬B(V s)

mca AP DM (φCTL
1 ∧̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s ∧B V2 s

mca AP DM (φCTL
1 ∨̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s ∨B V2 s

mca AP DM (φCTL
1 →̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s →B V2 s 4

CTL model checker: next

If we know in which states φCTL holds, then we know in which states
X φCTL holds: their predecessors:

mca AP DM (A X φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ forall-fin DM�S (s ′ 7→ (s DM�T s ′ →B V s ′))

mca AP M (E X φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ exists-fin DM�S (s ′ 7→ s(DM�T s ′ ∧B V s ′))

5



CTL model checker: small paths 1/2

The remaining temporal operators talk about infinite paths.
But it is sufficient to consider paths smaller than the diameter of
the model1:

IsSmallPathFrom ∈ (AP ∈ Set) → (DM ∈ DTModel AP) → DM�S →
list DM�S → Prop

IsSmallPathFrom AP DM s Π
def
=

(length Π ≤ size DM�F ) ∧ (nth Π 0 = some s) ∧
(nth Π (length Π− 1) = some s ′) ∧ (s ′ DM�T s) ∧(
∀n ∈ N, s ′, s ′′.

(
nth Π n = some s ′ ∧
nth Π (n + 1) = some s ′′

)
→ s ′ DM�T s ′′ = >B

)

1reminiscent of the pumping lemma for automata.

6

CTL model checker: small paths 2/2

And we can obtain all these paths:

small-paths-from ∈ (AP ∈ Set) → (DM ∈ DTModel AP) →
(s ∈ DM�S) →

Fintype (SmallPathFrom AP DM s)
small-paths-from def

= . . .

7

CTL model checker: generally

For the ‘generally’ temporal operator, we need to look at
lasso-shaped paths that are made up of a loop and a (possibly
empty) path that leads to that loop, and check that all the states
of this lasso satisfy the sub-property:

mca AP DM (A G φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ forall-fin

(small-paths-from AP DM s)
(Π 7→ forall-list Π (s ′ 7→ V s ′))

mca AP DM (E G φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ exists-fin

(small-paths-from AP DM s)
(Π 7→ forall-list Π (s ′ 7→ V s ′))

8

CTL model checker: future

mca AP DM (A F φCTL)
def
= . . .

mca AP DM (E F φCTL)
def
= . . .

Left as an exercise.

9



CTL model checker: until

mca AP DM (A (φCTL
1 U φCTL

2 ))
def
=

let V1 = mca AP DM φCTL
1 in

let V2 = mca AP DM φCTL
2 in

s 7→




forall-fin (small-paths-from AP DM s)


Π 7→


existi Π


j s ′′ 7→(
(foralli Π (i s ′ 7→ j <B i →B V1 s ′)
∧B V2 s ′′

)












mca AP DM (E (φCTL
1 U φCTL

2 ))
def
= . . .

Left as an exercise.
10

Actually implementing model checking

This is not very efficient!

In practice,

• the V s are memoised;
• “symbolic model checking” uses binary decision diagrams (IB

Logic and proof) to represent sets of states, and performs
operations on sets-as-BDDs, instead of explicitly manipulating
the sets;

• the states can be computed lazily;
• “partial order reduction” tries to not enumerate redundant

interleavings;
• …
• 40+ years of tricks!

11

Counterexamples

Generating counterexamples

Adapted from “Tree-Like Counterexamples in Model Checking”.

If the specification is not satisfied, and is in ACTL, then we can do
better than just say “no”: we can produce a counterexample.

The idea is that M 2AP ψACTL is equivalent to M �AP ¬ψACTL, which
is itself equivalent to nf-model M �AP nf-negs AP ψACTL, where the
latter formula is (the embedding of a proposition) in ECTL: it
suffices to find a witness of that ECTL proposition.

12



Shape of ECTL witnesses

The shape of an ECTL witness:

W , . . . ∈ data Witness (AP ∈ Set) (M ∈ TModel AP) ∈ Set :=
| wap ∈ M�S → Witness AP M
| wand ∈ Witness AP M → Witness AP M → Witness AP M
| winjl ∈ Witness AP M → Witness AP M
| winjr ∈ Witness AP M → Witness AP M
| wX ∈ M�S → M�S → Witness AP M → Witness AP M
| wF ∈ list M�S → Witness AP M → Witness AP M
| wG ∈ list (M�S × Witness AP M) → Witness AP M
| wU ∈ list (M�S × Witness AP M) → M�S → Witness AP M →

Witness AP M

13

Being an ECTL witness: atomic propositions

⇐ �← ⇚ wit-by ⭅ :

(AP ∈ Set) → (M ∈ TModel AP) → M�S →
(ψ ∈ StatePropCTL AP) → Witness AP M s →

Prop

There are (on purpose) no cases for A . . ..

A witness for an atomic proposition is just that the atomic
proposition holds immediately:

s �AP,M p wit-by W def
= M�` s p ∧ W = wap AP M s

14

Being an ECTL witness: next

A witness for next is a transition from the current state, and a
witness that the sub-property holds from the end state:

s �AP,M E X ψ wit-by W def
=

∃s ′ ∈ M�S,W ′ ∈ Witness AP M.




s M�T s ′ ∧
s ′ �AP,M ψ wit-by W ′ ∧
W = wX AP M s s ′ W ′




15

Being an ECTL witness: future

A witness for the ‘future’ temporal operator is a path that leads to
a state for which we have a witness that it satisfies the
sub-property:

s �AP,M E F ψ wit-by W def
=

∃s ′ ∈ M�S,Π ∈ list M�S,W ′ ∈ Witness AP M.


IsSmallPathFrom AP M s Π ∧
last Π = some s ′ ∧
s ′ �AP,M ψ wit-by W ′ ∧
W = wF AP M s Π W ′




16



Being an ECTL witness: generally

A witness for the ‘generally’ temporal operator is a lasso, for all the
states of which we have a witness that they satisfy the
sub-property:

s �AP,M E G ψ wit-by W def
=

let T = (M�S × Witness AP M) in
∃X ∈ list T .


IsSmallPathFrom AP M s X ∧
(∃i . (last T X) M�T (nth T X i)) ∧

∀i ∈ N, s ′ ∈ M�S,W ′ ∈ Witness AP M s ′.(

nth T X i = some 〈s ′,W ′〉 →
s ′ �AP,M ψ wit-by W ′

)

 ∧

W = wG AP M X)



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Being an ECTL witness: until

s �AP,M E ψ1 U ψ2 wit-by W def
=

let T = (M�S × Witness AP M) in
∃X ∈ list T , s ′ ∈ M�S,W ′ ∈ Witness AP M.


IsSmallPathFrom AP M s (X ++ [〈s ′,W ′〉]) ∧

∀i ∈ N, s ′′ ∈ M�S,W ′′ ∈ Witness AP M s ′.(

nth T X i = some 〈s ′′,W ′′′〉 →
s ′′ �AP,M ψ1 wit-by W ′′

)

 ∧

(s ′ �AP,M ψ2 wit-by W ′) ∧
W = wU AP M X s ′ W ′)




18

Being an ECTL witness: conjunction

s �AP,M ψ1 ∧̂ψ2 wit-by W def
=

∃W1 ∈ Witness AP M,W2 ∈ Witness AP M.(
s �AP,M ψ1 wit-by W1 ∧ s �AP,M ψ2 wit-by W2 ∧
W = wand AP M W1 W2

)

19

Being an ECTL witness: disjunction

s �AP,M ψ1 ∨̂ψ2 wit-by W def
=


∃W1 ∈ Witness AP M.(

s �AP,M ψ1 wit-by W1 ∧
W = winjl AP M W1

)

 ∨




∃W2 ∈ Witness AP M.(
s �AP,M ψ2 wit-by W2 ∧
W = winjr AP M W2

)



20



Satisfiability and existence of witnesses

The requirement for a DTModel is just a brutal way to require M
to be finite (otherwise, the witness could be infinite, and we would
need a coinductive definition of a witness)

∀AP ∈ Set,M ∈ TModel AP ,DM ∈ DTModel AP ,
s ∈ M�S, ψ ∈ StatePropCTL AP .

es ψ → reflect-model AP M DM →


(s �WI-s
AP,M ψ) ↔(
∃W ∈ Witness (split AP) (nf-model AP M).

s �(split AP),(nf-model AP M) (nf s AP ψ) wit-by W

)



Now, if we have M 2AP ψACTL, there exists a corresponding W —
and we can effectively find it by tweaking our model checking
algorithm above (details elided).

21

Witnesses beyond ECTL

Can we have witnesses for more than just ECTL?

Yes, for example, one of the nice things about LTL is that
counterexamples are just paths.

But if we look at fragments of CTL∗ that are to expressive, then
these witnesses are often difficult to understand and use.

Instead, focus has been mostly on making better counterexamples
for common subsets of ECTL.
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Model checking LTL and CTL∗

Requires a bit of machinery to check whether a state is visited
infinitely often: Büchi automata.

We will not consider this further.

23

Summary

We saw a model checking algorithm for CTL, and sketched how it
could be modified to generate counterexamples for ACTL formulas.

24



CEGAR
not examinable

CEGAR

Assume that we have a way to automatically generate abstract
models. Then we can take the following approach: recursively:
pick an abstraction of the model
check the property in the abstract model
if it is true, happy
if it is false, is it a genuine counterexample?
try it on the base model: if it works, we have found a genuine
counterexample
if it does not work, build an abstraction.
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Model checking hybrid systems

Modelling physical systems is often best done with continuous
variables. Is it possible apply model checking to these?

Yes! It has been done for example for ACAS X, the
Next-Generation Airborne Collision Avoidance System
https://doi.org/10.1007/s10009-016-0434-1
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Summary

• How temporal models can be used to describe systems that
evolve in time.

• How temporal logics (CTL∗, etc.) can be used to specify
those systems.

• How to use model checking in practice.
• How to relate a concrete temporal model to an abstract

temporal model with simulation.
• How to implement model-checking for CTL, and

counterexample generation for ACTL.
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