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Recap

Last time, we looked at how separation logic enables modular

reasoning about pointers and mutable data structures.

In this lecture, we will consider extending Hoare logic in other

directions:

• We will look at extending partial correctness triples to enforce

termination, and at adapting the Hoare logic rules for partial

correctness to total correctness.

• We will look at how to handle (a crude form of) functions.

• We will look at how to reason about simple forms of

concurrency.
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Total correctness

Total correctness

So far, we have concerned ourselves only with partial correctness,

and not with whether the program diverges.

However, in many contexts where we care about correctness

enough to use Hoare logic for verification, we also care about

termination.
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Total correctness triples

There is no standard notation for total correctness triples;

we will use [P] C [Q].

The total correctness triple [P] C [Q] holds if and only if:

• assuming C is executed in an initial state satisfying P,

• then the execution terminates,

• and the terminal state satisfies Q.
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Semantics of total correctness triples

A total correctness triple asserts that when the given command is

executed from an initial state that satisfies the precondition, then

any execution must terminate, and that any terminal state satisfies

the postcondition:

|= [P] C [Q]
def
=

∀s. s ∈ [[P]]⇒
(
¬(〈C , s〉 →ω) ∧
(∀s ′. 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[Q]])

)
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Semantics of total correctness triples

Since WHILE is safe and deterministic, this is equivalent to

∀s. s ∈ [[P]]⇒ ∃s ′. 〈C , s〉 →∗ 〈skip, s ′〉 ∧ s ′ ∈ [[Q]]

Assume s ∈ [[P]] and 〈C , s〉 →∗ 〈skip, s ′〉.

Since WHILE is safe and deterministic, ¬(〈C , s〉 →ω). Moreover,

since WHILE is deterministic, for all s ′′ such that

〈C , s〉 →∗ 〈skip, s ′′〉, s ′′ = s ′, so s ′′ ∈ [[Q]].
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Examples of total correctness triples

• The following total correctness triple is valid:

|= [X ≥ 0] while X 6= 0 do X := X − 1 [X = 0]

the loop terminates when executed from an initial state where

X is non-negative.

• The following total correctness triple is not valid:

6|= [>] while X 6= 0 do X := X − 1 [X = 0]

the loop only terminates when executed from an initial state

where X is non-negative, but not when executed from an

initial state where X is negative.

Both of the corresponding partial correctness triples hold.
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Corner cases of total correctness triples

[P] C [>]

• this says that C always terminates when executed from an

initial state satisfying P.

[>] C [Q]

• this says that C always terminates, and ends up in a state

where Q holds.

[P] C [⊥]

• this says that C always terminates when executed from an

initial state satisfying P, and ends up in a state where ⊥
holds, which means that no state can satisfy P.
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Rules for total correctness

while commands are the commands that introduce

non-termination.

Except for the loop rule, all the rules of Hoare logic

(from the first lecture) are sound for total correctness

as well as partial correctness.

` [P] skip [P] ` [P[E/X ]] X := E [P]

` [P] C1 [Q] ` [Q] C2 [R]

` [P] C1;C2 [R]

` [P ∧ B] C1 [Q] ` [P ∧ ¬B] C2 [Q]

` [P] if B then C1 else C2 [Q]

` P1 ⇒ P2 ` [P2] C [Q2] ` Q2 ⇒ Q1

` [P1] C [Q1]
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Unsoundness of the partial correctness loop rule for total cor-

rectness

The loop rule that we have for partial correctness is not sound for

total correctness:

`FOL > ⇒ >

...

`FOL (> ∧ T)⇒ > ` {>} skip {>}

...

`FOL > ⇒ >
` {> ∧ T} skip {>}

` {>} while T do skip {> ∧ ¬T}

...

` > ∧ ¬T⇒ ⊥
` {>} while T do skip {⊥}

If the loop rule were sound for total correctness, then this would

show that while T do skip always terminates in a state satisfying

⊥.
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Loop variants

We need an alternative total correctness loop rule that ensures

that the loop always terminates.

The idea is to require that on each iteration of the loop, some

quantity that cannot decrease forever, the variant, decreases.

For example, there is no infinite descending chain of non-negative

integers. We will restrict ourselves to non-negative integer variants.
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Loop rule for total correctness

In the rule below, the variant is t, and the fact that it decreases is

specified with an auxiliary variable n:

` [P ∧ B ∧ (t = n)] C [P ∧ (t < n)] `FOL P ∧ B ⇒ t ≥ 0

` [P] while B do C [P ∧ ¬B]

The second hypothesis ensures that the variant is non-negative.

The variant t does not have to occur in C .

11

Total correctness: factorial example

Consider the factorial computation we looked at before:

[X = x ∧ X ≥ 0 ∧ Y = 1]

while X 6= 0 do (Y := Y × X ;X := X − 1)

[Y = x!]

By assumption, X is non-negative and decreases in each iteration

of the loop.

To verify that this factorial implementation terminates, we can

thus take the variant t to be X .
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Total correctness: factorial example

[X = x ∧ X ≥ 0 ∧ Y = 1]

while X 6= 0 do (Y := Y × X ;X := X − 1)

[Y = x!]

Take the invariant I to be Y × X ! = x! ∧ X ≥ 0, and the variant t

to be X .

Then we have to show that

• `FOL (X = x ∧ X ≥ 0 ∧ Y = 1)⇒ I

• ` [I ∧ X 6= 0 ∧ (X = n)] Y := Y × X ;X := X − 1 [I ∧ (X < n)]

• `FOL (I ∧ ¬(X 6= 0))⇒ Y = x!

• `FOL (I ∧ X 6= 0)⇒ X ≥ 0
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Total correctness, partial correctness, and termination

Informally: total correctness = partial correctness + termination.

This is captured formally by:

• If ` {P} C {Q} and ` [P] C [>], then ` [P] C [Q].

• If ` [P] C [Q], then ` {P} C {Q}.

It is often easier to show partial correctness and termination

separately.
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Showing termination separately

Termination is usually straightforward to show, but there are

examples where it is not.

For example, no one knows whether the program below terminates

for all values of X :

while X > 1 do

if ODD(X ) then X := 3× X + 1 else X := X DIV 2

(The Collatz conjecture is that this terminates with X = 1.)

Microsoft’s T2 tool is used to prove termination of systems code.
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Summary of total correctness

We have given rules for total correctness, similar to those for

partial correctness.

Only the loop rule differs: the premises of the loop rule require

that the loop body decreases a variant.

It is even possible to do amortised, asymptotic complexity analysis

in Hoare logic:

• A Fistful of Dollars, Armaël Guéneau et al., ESOP 2018
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Functions (not examinable)

Functions

Consider an extension of our language with the following crude

form of functions where arguments are passed by reference :

C ::= . . . | let F (X1, . . . ,Xn) = C1 in C2 | F (X1, . . . ,Xn)

{X = x ∧ x > 0}
let F (X ,N) =

(if X > 1 then (X := X − 1;N := N × X ;F (X ,N))

else skip) in

N := X ;

F (X ,N)

{N = x!}
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Hoare Logic rules for functions

We need to extend our judgment ` with a component F to keep

track of the pre- and postconditions of functions:

F(F ) = 〈P,Q〉 . . .

`F {P[Z1/X1, . . . ,Zn/Xn]} F (Z1, . . . ,Zn) {Q[Z1/X1, . . . ,Zn/Xn]}

`F [F 7→〈P′,Q′〉] {P ′} C1 {Q ′} `F [F 7→〈P′,Q′〉] {P} C2 {Q} . . .

`F {P} let F (X1, . . . ,Xn) = C1 in C2 {Q}

We need to be careful to not have aliasing between program

variables. We assume that the . . . assumptions deal with that.
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Verifying an example using functions

{X = x ∧ x > 0}
let F (X ,N) =

{X > 0 ∧ N = X × . . .× x}


if X > 1 then

{X > 0 ∧ N = X × . . .× x ∧ X > 1}
{X − 1 > 0 ∧ N × (X − 1) = (X − 1)× . . .× x}
X := X − 1;

{X > 0 ∧ N × X = X × . . .× x}
N := N × X ;

{X > 0 ∧ N = X × . . .× x}
F (X ,N)

{N = 1× . . .× x}
else

{X > 0 ∧ N = X × . . .× x ∧ ¬(X > 1)}
skip

{N = 1× . . .× x}




{N = 1× . . .× x} in
{X = x ∧ x > 0}
{X > 0 ∧ X = X × . . .× x}
N := X ;

{X > 0 ∧ N = X × . . .× x}
F (X ,N)

{N = x!} 19

Summary of functions

Hoare triples are a natural fit for specifying and verifying functions.

Recursive function pre- and postconditions are like loop invariants,

but with a “gap” between the entry and exit of the function (the

only gap between an iteration of a loop and the next is the guard):

let F (. . .) =

{P}
. . .

{P[. . . / . . .]}
F (. . .)

{Q[. . . / . . .]}
. . .

{Q} in
. . .

{P[. . . / . . .]}
F (. . .)

{Q[. . . / . . .]} 20

Concurrency (not examinable)



Concurrent composition

Consider an extension of our WHILE language with a concurrent

composition construct (also “parallel composition”), C1 ||C2.

For our simple form of concurrency, the statement C1 ||C2 reduces

by interleaving execution steps of C1 and C2, until both have

terminated:

〈C1, 〈s, h〉〉 → 〈C ′1, 〈s ′, h′〉〉
〈C1 ||C2, 〈s, h〉〉 → 〈C ′1 ||C2, 〈s ′, h′〉〉
〈C2, 〈s, h〉〉 → 〈C ′2, 〈s ′, h′〉〉

〈C1 ||C2, 〈s, h〉〉 → 〈C1 ||C ′2, 〈s ′, h′〉〉

For instance, (X := 0 ||X := 1); print(X ) is allowed to print 0 or 1.

Final states are now of the form F ::= skip | F1 ||F2.
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Concurrency disciplines

Adding concurrency complicates reasoning by introducing the

possibility of concurrent interference on shared state.

While separation logic does extend to reason about general

concurrent interference, we will focus on two common idioms of

concurrent programming with limited forms of interference:

• disjoint concurrency, and

• well-synchronised shared state.
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Disjoint concurrency

Disjoint concurrency

Disjoint concurrency refers to multiple commands potentially

executing concurrently, but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can

often be expressed using disjoint concurrency.

For instance, in a parallel merge sort, the recursive calls to merge

sort operate on disjoint parts of the underlying array.
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Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our

assertions into two disjoint parts, P1 and P2, and give each parallel

command ownership of one of them:

` {P1} C1 {Q1} ` {P2} C2 {Q2}
mod(C1) ∩ FV (P2,Q2) = ∅ mod(C2) ∩ FV (P1,Q1) = ∅

` {P1 ∗ P2} C1||C2 {Q1 ∗ Q2}

The third hypothesis ensures that C1 does not modify any program

variables used in the specification of C2, the fourth hypothesis

ensures the symmetric.
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Disjoint concurrency example

Here is a simple example to illustrate two parallel increment

operations that operate on disjoint parts of the heap:

{X 7→ 3 ∗ Y 7→ 4}
{X 7→ 3} {Y 7→ 4}
A := [X ]; [X ] := A + 1 B := [Y ]; [Y ] := B + 1

{X 7→ 4} {Y 7→ 5}
{X 7→ 4 ∗ Y 7→ 5}
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Well-synchronised concurrency

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency

idiom of using locks to ensure exclusive access to state shared

between multiple threads.

To reason about locking, concurrent separation logic extends

separation logic with lock invariants that describe the resources

protected by locks.

When acquiring a lock, the acquiring thread takes ownership of the

lock invariant and when releasing the lock, must give back

ownership of the lock invariant.
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Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write `I {P} C {Q} to indicate that we can derive the given

triple assuming the lock invariant is I . We have the following rules:

FV (I ) = ∅
`I {emp} lock {I ∗ locked}

FV (I ) = ∅
`I {I ∗ locked} unlock {emp}

The locked resource ensures the lock can only be unlocked by the

thread that currently has the lock.
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Well-synchronised shared state example

To illustrate, consider a program with two threads that both access

a number stored in shared heap cell at location X concurrently.

Thread A increments X by 1 twice, and thread B increments X by

2. The threads use a lock to ensure their accesses are

well-synchronised.

Assuming that location X initially contains an even number, we

wish to prove that the contents of location X is still even after the

two concurrent threads have terminated.

A non-synchronised interleaving would allow X to end up being

odd.
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Well-synchronised shared state example

First, we need to define a lock invariant.

The lock invariant needs to own the shared heap cell at location X

and should express that it always contains an even number:

I ≡ ∃n. x 7→ 2× n

We have to use an indirection through X = x because I is not

allowed to mention program variables.
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Well-synchronised shared state example

{X = x ∧ emp}
{X = x ∧ emp} {X = x ∧ emp}
lock; lock;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}
A := [X ]; [X ] := A + 1;

{X = x ∧ (∃n. x 7→ 2× n + 1) ∗ locked}
B := [X ]; [X ] := B + 1;

{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}

C := [X ]; [X ] := C + 2;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
unlock unlock

{X = x ∧ emp} {X = x ∧ emp}
{X = x ∧ emp}

We can temporarily violate the invariant when holding the lock.
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Summary of concurrent separation logic

We have seen how concurrent separation logic supports reasoning

about concurrent programs.

The rule for disjoint concurrency enables reasoning about the parts

of the state that are not shared, and the rules for locks enable

reasoning about the parts of the state that are shared but guarded

by locks.

Concurrent separation logic can also be extended to support

reasoning about general concurrency interference.

Papers of historical interest:

• Peter O’Hearn. Resources, Concurrency and Local Reasoning.
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Conclusion

Overall summary

We have seen that Hoare logic (separation logic, when we have

pointers) enables specifying and reasoning about programs.

Reasoning remains close to the syntax, and captures the intuitions

we have about why programs are correct.

It’s all about invariants!
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