Foundations of Computer Science

Lists of pairs and pairs of lists

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021

Building a List of Pairs

lo1; @255 @ | }H [(@1, 1); (22, 92); -5 (@n, ym);]

[yi; y2; -5 Yns |

let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) =-> (x, y) :: zip Xs ys
| - -> [1

Building a List of Pairs

let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) -> (x, y) :: zip Xs ys
| - -> [1

The wildcard pattern (_) matches anything.
For example, _ will match: ([], (y::ys))
The patterns are tested in order

In this match, _ will not match: (x::xs, (y:ys))

In[1]:

Building a List of Pairs

let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) -> (x, y) :: zip Xs ys
| - -> [1

The wildcard pattern (_) matches anything.
For example, _ will match: ([], (y::ys))
The patterns are tested in order

In this match, _ will not match: (x::xs, (y:ys))

In[1]: zip [1;2;3;4]1 [’a’;’b’;’c’]

Building a List of Pairs

let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) -> (x, y) :: zip Xs ys
| - -> [1

The wildcard pattern (_) matches anything.
For example, _ will match: ([], (y::ys))
The patterns are tested in order

In this match, _ will not match: (x::xs, (y:ys))

In[1]: zip [1;2;3;4]1 [’a’;’b’;’¢c’]
Out[1]: - : (int * char) list = [(1,’a’); (2,’b’); (3,’c’)]

Building a List of Pairs

The zip function builds a list-of-pairs from two lists

val zip : ’a list -> ’b list -> (’a * ’b) list

The unzip function builds a pair-of-lists from a list-of-pairs

val unzip : (’a * ’b) list -> (’a list * ’b list)

Syntax: Declarations and Local Bindings

let in declarations (familiar)

[let p = e

let in expressions (new)

let p = el in e2

Binds the value of el to p within expression e2
Useful within a function

Can perform intermediate computations with function arguments

Building a Pair of Results

Defining unzip with a local binding:

In[2]:

The let construct binds xs and ys to the results of the recursive call.

Building a Pair of Results

Defining unzip with a local binding:

In[2]: let rec unzip = function
| 01 -> (01, [D
| (x, y)::ps -> let xs, ys = unzip ps in
(x::xs, y::ys)

The let construct binds xs and ys to the results of the recursive call.

Building a Pair of Results

Defining unzip with a local binding:

In[2]: let rec unzip = function
[01 -> (01, [
| (x, y)::ps -> let xs, ys = unzip ps in
(x::xs, y::ys)
Out[2]: wval unzip : (’a * ’b) list -> ’a list * ’b list = <fun>
In[3]:

The let construct binds xs and ys to the results of the recursive call.

Building a Pair of Results

Defining unzip with a local binding:

In[2]: let rec unzip = function
| 01 -> (01, [D
| (x, y)::ps -> let xs, ys = unzip ps in
(x::xs, y::ys)

val unzip : (’a * ’b) list -> ’a list x ’b list = <fun>

unzip [(1,7a’);(2,’b’)]

The let construct binds xs and ys to the results of the recursive call.

Building a Pair of Results

Defining unzip with a local binding:

In[2]: let rec unzip = function
| 01 -> (01, [D
| (x, y)::ps -> let xs, ys = unzip ps in
(x::xs, y::ys)

val unzip : (’a * ’b) list -> ’a list x ’b list = <fun>
unzip [(1,%a’);(2,’b’)]

int list * char list

= ([1; 21, [’a’; ’b’1)

The let construct binds xs and ys to the results of the recursive call.

Defining unzip with an auxiliary function:

Building a Pair of Results

let conspair ((x, y), (xs, ys)) = (x:

let rec unzip = function
[1 -> ([1, [

| xy :: pairs -> conspair (xy, unzip pairs)

XS, y::ys)

Defining unzip with an auxiliary function:

Building a Pair of Results

let conspair ((x, y), (xs, ys)) = (x:

let rec unzip = function
[1 -> ([1, [

| xy :: pairs -> conspair (xy, unzip pairs)

XS, y::ys)

Defining unzip with an auxiliary function:

Building a Pair of Results

let conspair ((x, y), (xs, ys)) = (x:

let rec unzip = function
[1 -> ([1, [

| xy :: pairs -> conspair (xy, unzip pairs)

XS, y::ys)

Defining unzip with an auxiliary function:

Building a Pair of Results

let conspair ((x, y), (xs, ys)) = (x:

let rec unzip = function
[1 -> ([1, [

| xy :: pairs -> conspair (xy, unzip pairs)

XS, y::ys)

Building a Pair of Results

Defining unzip with an accumulator:

let rec revUnzip = function
| (L1, xs, ys) -> (Xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, X::XS, y::ys)

Question: How to call revUnzip?

revUnzip (pairs, [J1, [1)

Question: What's the result of the following?

In[4]:

Building a Pair of Results

Defining unzip with an accumulator:

let rec revUnzip = function
| (L1, xs, ys) -> (Xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, X::XS, y::ys)

Question: How to call revUnzip?

revUnzip (pairs, [J1, [1)

Question: What's the result of the following?

In[4]: let pairs = [("a", 1); ("b", 2)1;;
revUnzip (pairs, [1, [1)

Building a Pair of Results

Defining unzip with an accumulator:

let rec revUnzip = function
| (L1, xs, ys) -> (Xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, X::XS, y::ys)

Question: How to call revUnzip?

revUnzip (pairs, [J1, [1)

Question: What's the result of the following?

In[4]: let pairs = [("a”, 1); ("b", 2)1;
revUnzip (pairs, [1, [1)

Out[4]: - : string list * int list
= ([Hb”; HaH]’ [2; ‘l])

