
Foundations of Computer Science
Lists of pairs and pairs of lists

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021



Building a List of Pairs

[x1; x2; . . . ; xn; ]
[y1; y2; . . . ; yn; ]

}
7→ [(x1, y1); (x2, y2); . . . ; (xn, yn); ]

l e t rec zip xs ys =
match xs, ys with
| (x::xs , y::ys) -> (x, y) :: zip xs ys
| _ -> []



Building a List of Pairs

l e t rec zip xs ys =
match xs, ys with
| (x::xs , y::ys) -> (x, y) :: zip xs ys
| _ -> []

The wildcard pattern (_) matches anything.

For example, _ will match: ([], (y :: ys))

The patterns are tested in order

In this match, _ will not match: (x :: xs , (y :: ys))

In[1]: zip [1;2;3;4] [’a’;’b’;’c’]

Out[1]: - : (int * char) list = [(1,’a’); (2,’b’); (3,’c’)]



Building a List of Pairs

l e t rec zip xs ys =
match xs, ys with
| (x::xs , y::ys) -> (x, y) :: zip xs ys
| _ -> []

The wildcard pattern (_) matches anything.

For example, _ will match: ([], (y :: ys))

The patterns are tested in order

In this match, _ will not match: (x :: xs , (y :: ys))

In[1]: zip [1;2;3;4] [’a’;’b’;’c’]

Out[1]: - : (int * char) list = [(1,’a’); (2,’b’); (3,’c’)]



Building a List of Pairs

l e t rec zip xs ys =
match xs, ys with
| (x::xs , y::ys) -> (x, y) :: zip xs ys
| _ -> []

The wildcard pattern (_) matches anything.

For example, _ will match: ([], (y :: ys))

The patterns are tested in order

In this match, _ will not match: (x :: xs , (y :: ys))

In[1]: zip [1;2;3;4] [’a’;’b’;’c’]

Out[1]: - : (int * char) list = [(1,’a’); (2,’b’); (3,’c’)]



Building a List of Pairs

The zip function builds a list-of-pairs from two lists

va l zip : ’a list -> ’b list -> (’a * ’b) list

The unzip function builds a pair-of-lists from a list-of-pairs

va l unzip : (’a * ’b) list -> (’a list * ’b list)



Syntax: Declarations and Local Bindings

let in declarations (familiar)

l e t p = e

let in expressions (new)

l e t p = e1 i n e2

Binds the value of e1 to p within expression e2

Useful within a function

Can perform intermediate computations with function arguments



Building a Pair of Results

Defining unzip with a local binding:

In[2]: l e t rec unzip = funct ion
| [] -> ([], [])
| (x, y)::ps -> l e t xs, ys = unzip ps i n

(x::xs, y::ys)

Out[2]: va l unzip : (’a * ’b) list -> ’a list * ’b list = < fun >

In[3]: unzip [(1,’a’);(2,’b’)]

Out[3]: - : int list * char list
= ([1; 2], [’a’; ’b’])

local binding

expression

The let construct binds xs and ys to the results of the recursive call.



Building a Pair of Results

Defining unzip with a local binding:

In[2]: l e t rec unzip = funct ion
| [] -> ([], [])
| (x, y)::ps -> l e t xs , ys = unzip ps i n

(x::xs, y::ys)

Out[2]: va l unzip : (’a * ’b) list -> ’a list * ’b list = < fun >

In[3]: unzip [(1,’a’);(2,’b’)]

Out[3]: - : int list * char list
= ([1; 2], [’a’; ’b’])

local binding

expression

The let construct binds xs and ys to the results of the recursive call.



Building a Pair of Results

Defining unzip with a local binding:

In[2]: l e t rec unzip = funct ion
| [] -> ([], [])
| (x, y)::ps -> l e t xs , ys = unzip ps i n

(x::xs, y::ys)

Out[2]: va l unzip : (’a * ’b) list -> ’a list * ’b list = < fun >

In[3]: unzip [(1,’a’);(2,’b’)]

Out[3]: - : int list * char list
= ([1; 2], [’a’; ’b’])

local binding

expression

The let construct binds xs and ys to the results of the recursive call.



Building a Pair of Results

Defining unzip with a local binding:

In[2]: l e t rec unzip = funct ion
| [] -> ([], [])
| (x, y)::ps -> l e t xs , ys = unzip ps i n

(x::xs, y::ys)

Out[2]: va l unzip : (’a * ’b) list -> ’a list * ’b list = < fun >

In[3]: unzip [(1,’a’);(2,’b’)]

Out[3]: - : int list * char list
= ([1; 2], [’a’; ’b’])

local binding

expression

The let construct binds xs and ys to the results of the recursive call.



Building a Pair of Results

Defining unzip with a local binding:

In[2]: l e t rec unzip = funct ion
| [] -> ([], [])
| (x, y)::ps -> l e t xs , ys = unzip ps i n

(x::xs, y::ys)

Out[2]: va l unzip : (’a * ’b) list -> ’a list * ’b list = < fun >

In[3]: unzip [(1,’a’);(2,’b’)]

Out[3]: - : int list * char list
= ([1; 2], [’a’; ’b’])

local binding

expression

The let construct binds xs and ys to the results of the recursive call.



Building a Pair of Results

Defining unzip with an auxiliary function:

l e t conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

l e t rec unzip = funct ion
| [] -> ([], [])
| xy :: pairs -> conspair (xy , unzip pairs)



Building a Pair of Results

Defining unzip with an auxiliary function:

l e t conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

l e t rec unzip = funct ion
| [] -> ([], [])
| xy :: pairs -> conspair (xy , unzip pairs)

one pair



Building a Pair of Results

Defining unzip with an auxiliary function:

l e t conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

l e t rec unzip = funct ion
| [] -> ([], [])
| xy :: pairs -> conspair (xy , unzip pairs)

one pair list of pairs



Building a Pair of Results

Defining unzip with an auxiliary function:

l e t conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

l e t rec unzip = funct ion
| [] -> ([], [])
| xy :: pairs -> conspair (xy , unzip pairs)

one pair list of pairs pair of lists



Building a Pair of Results
Defining unzip with an accumulator:

l e t rec revUnzip = funct ion
| ([], xs, ys) -> (xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, x::xs, y::ys)

Question: How to call revUnzip?

revUnzip (pairs , [], [])

Question: What’s the result of the following?

In[4]: l e t pairs = [("a", 1); ("b", 2)];;
revUnzip (pairs , [], [])

Out[4]: - : string list * int list
= (["b"; "a"], [2; 1])



Building a Pair of Results
Defining unzip with an accumulator:

l e t rec revUnzip = funct ion
| ([], xs, ys) -> (xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, x::xs, y::ys)

Question: How to call revUnzip?

revUnzip (pairs , [], [])

Question: What’s the result of the following?

In[4]: l e t pairs = [("a", 1); ("b", 2)];;
revUnzip (pairs , [], [])

Out[4]: - : string list * int list
= (["b"; "a"], [2; 1])



Building a Pair of Results
Defining unzip with an accumulator:

l e t rec revUnzip = funct ion
| ([], xs, ys) -> (xs, ys)
| ((x, y)::ps, xs, ys) -> revUnzip (ps, x::xs, y::ys)

Question: How to call revUnzip?

revUnzip (pairs , [], [])

Question: What’s the result of the following?

In[4]: l e t pairs = [("a", 1); ("b", 2)];;
revUnzip (pairs , [], [])

Out[4]: - : string list * int list
= (["b"; "a"], [2; 1])


