
Foundations of Computer Science
Take, drop & search

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021

Warm-Up

Question 1: What is the type of this function?

In[1]: l e t rec flatten = funct ion
| [] -> []
| l :: ls -> l @ flatten ls

Out[1]: va l flatten : ’a list list -> ’a list = < fun >

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

Warm-Up

Question 1: What is the type of this function?

In[1]: l e t rec flatten = funct ion
| [] -> []
| l :: ls -> l @ flatten ls

Out[1]: va l flatten : ’a list list -> ’a list = < fun >

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

Warm-Up

Question 1: What is the type of this function?

In[1]: l e t rec flatten = funct ion
| [] -> []
| l :: ls -> l @ flatten ls

Out[1]: va l flatten : ’a list list -> ’a list = < fun >

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

Warm-Up

Question 1: What is the type of this function?

In[1]: l e t rec flatten = funct ion
| [] -> []
| l :: ls -> l @ flatten ls

Out[1]: va l flatten : ’a list list -> ’a list = < fun >

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

Warm-Up

Question 1: What is the type of this function?

In[1]: l e t rec flatten = funct ion
| [] -> []
| l :: ls -> l @ flatten ls

Out[1]: va l flatten : ’a list list -> ’a list = < fun >

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

List Utilities: take and drop

xs = [x0; x1; . . . ; xi−1,︸ ︷︷ ︸
take(xs,i)

xi; xi+1; . . . ; xn−1︸ ︷︷ ︸
drop(xs,i)

]

l e t rec take = funct ion
| ([], _) -> []
| (x::xs, i) ->

i f i > 0 then x :: take (xs, i - 1)
e l s e []

l e t rec drop = funct ion
| ([], _) -> []
| (x::xs, i) ->

i f i > 0 then drop (xs, i - 1)
e l s e x::xs

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

List Utilities: take and drop

va l take : ’a list * int -> ’a list = < fun >
va l drop : ’a list * int -> ’a list = < fun >

In[2]: l e t a = [1; 2; 3; 4; 5; 6; 7]

Out[2]: va l a : int list = [1; 2; 3; 4; 5; 6; 7]

In[3]: take (a, 3)

Out[3]: - : int list = [1; 2; 3]

In[4]: drop (a, 3)

Out[4]: - : int list = [4; 5; 6; 7]

Linear Search

Find x in list [x1; x1; . . . ; xn] by comparing with each element

Obviously O(n) time

Simple & general

Ordered searching needs only O(logn)

Indexed lookup needs only O(1)

More about search in later lectures . . .

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

Equality tests

In[5]: l e t rec member x = funct ion
| [] -> f a l s e
| y :: l -> x = y || member x l

Out[5]: va l member : ’a -> ’a list -> bool = < fun >

Equality testing is ok for integers. . .
In[6]: member 3 [2;3;4]

Out[6]: - : bool = true

. . . but not for functions
In[7]: member take [take; drop]

Out: Exception: Invalid_argument "compare: functional value ".

