Foundations of Computer Science

Take, drop & search

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021

Question 1: What is the type of this function?

In[1]:

Question 2a: What is the cost of evaluating xs @ ys?

Question 2b: What is the cost of evaluating x :: xs?

Question 1: What is the type of this function?

In[1]: let rec flatten = function
| [1 -> 11
| 1 :: 1s -> 1 @ flatten 1s

Question 2a: What is the cost of evaluating xs @ ys?

Question 2b: What is the cost of evaluating x :: xs?

Question 1: What is the type of this function?

let
| [1]
| 1

In[1]: rec flatten = function

-> [1]
ls -> 1 @ flatten 1s

val flatten ’a list list -> ’a list

Out[1]:

<fun>

Question 2a: What is the cost of evaluating xs @ ys?

Question 2b: What is the cost of evaluating x :: xs?

Question 1: What is the type of this function?

In[1]: let rec flatten = function
| [1 -> 11
| 1 :: 1s -> 1 @ flatten 1s

Out[1]: val flatten : ’a list list -> ’a list = <fun>

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

Question 1: What is the type of this function?

In[1]: let rec flatten = function
| [1 -> 11
| 1 :: 1s -> 1 @ flatten 1s

Out[1]: val flatten : ’a list list -> ’a list = <fun>

Question 2a: What is the cost of evaluating xs @ ys?

O(List . length xs)

Question 2b: What is the cost of evaluating x :: xs?

O(1)

xs = [mo; x15 ...

5 Li—1,T45 Tig1; - -

List Utilities: take and drop

; 3%171]

take(xs,1i)

drop(xs,i)

let rec take = function
[(1, > -> [1
| (x::xs, i) ->
if i > 0 then x
else []

take (xs, i - 1)

let rec drop = function

[(L1,) -> [1

| (x::xs, i) ->
if i > 0 then drop (xs,
else x::xs

i- 1)

List Utilities: take and drop

val take

val drop :

’a list * int -> ’a list
’a list * int -> ’a list

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

In[2]: let a

In[3]:

In[4]:

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

let a = [1; 2; 3;

val a : int list

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

let a = [1; 2; 3;
val a : int list

take (a, 3)

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

let a = [1; 2; 3;
val a : int list
take (a, 3)

- : int list =

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

let a = [1; 2; 3;
val a : int list
take (a, 3)

- : int list =

drop (a, 3)

List Utilities: take and drop

val take : ’a list * int -> ’a list
val drop : ’a list % int -> ’a list

let a = [1; 2; 3;
val a : int list
take (a, 3)

- : int list [1;
drop (a, 3)

- : int list

Linear Search

Find x in list [x1; 15 ...; =] by comparing with each element
Obviously O(n) time
Simple & general

Ordered searching needs only O(logn)

Indexed lookup needs only O(1)

More about search in later lectures . ..

Equality tests

Equality tests

In[5]: let rec member x = function
| [1 -> false
|y :: 1 ->x =1y || member x 1

Equality tests

let rec member x = function
| [1 -> false

|y :: 1 ->x =1y || member x 1

val member : ’a -> ’a list -> bool = <fun>

Equality tests

In[5]: let rec member x = function
| [1 -> false
|y :: 1 ->x =1y || member x 1

Qut[5]: val member : ’a -> ’a list -> bool =

Equality testing is ok for integers. ..
In[6]: member 3 [2;3;4]

<fun>

Equality tests

In[5]: let rec member x = function
| [1 -> false
|y :: 1 ->x =1y || member x 1

Qut[5]: val member : ’a -> ’a list -> bool =

Equality testing is ok for integers. ..
In[6]: member 3 [2;3;4]
Out[6]: - : bool = true

In[7]:

<fun>

Equality tests

In[5]: let rec member x = function
| [1 -> false
|y :: 1 ->x =1y || member x 1

Qut[5]: val member : ’a -> ’a list -> bool =

Equality testing is ok for integers. ..
In[6]: member 3 [2;3;4]
Out[6]: - : bool = true

... but not for functions

In[7]: member take [take; drop]

<fun>

Equality tests

In[5]: let rec member x = function
| [1 -> false
|y :: 1 ->x =1y || member x 1

Out[5]: val member : ’a -> ’a list -> bool = <fun>

Equality testing is ok for integers. ..
In[6]: member 3 [2;3;4]
Out[6]: - : bool = true

... but not for functions
In[7]: member take [take; drop]

Qut: Exception: Invalid_argument "compare:

functional value”.

