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Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?
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Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)
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Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?
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Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]
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Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list
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Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]
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A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >
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A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs , ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >
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Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"
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