
Foundations of Computer Science
Appending & reversing lists

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Append: List Concatenation

In[1]: l e t rec append xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append xs ys

Out[1]: va l append : ’a list -> ’a list -> ’a list = < fun >

append [1; 2; 3] [4] ⇒ 1 :: append [2;3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4]))
⇒ [1; 2; 3; 4]

What is the time and space complexity of this function?



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n2)

In[2]: l e t rec nrev = funct ion
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[2]: va l nrev : ’a list -> ’a list = < fun >

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c ]) @ [b]) @ [a]
⇒ (([] @ [c ]) @ [b]) @ [a]
⇒ [c; b; a]

What is the time and space complexity of this function?
Recall: append is O(n), and we have n(n + 1)/2 conses, which is O(n2)



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

In[3]: l e t rec rev_app xs ys =
match xs with

| [] -> ys
| x::xs -> rev_app xs (x::ys)

Out[3]: va l rev_app : ’a list -> ’a list -> ’a list = < fun >

accumulator

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

What is the time complexity of this function?



Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]



Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]



Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]



Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]



Reversing a List in O(n)

An interface to rev_app:

In[4]: l e t rev xs = rev_app xs []

Out[4]: va l rev : ’a list -> ’a list = < fun >

In[5]: rev [1;2;3]

Out[5]: - : int list = [3; 2; 1]



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append

Question 3a: What does this return?

In[6]: l e t a = [2]

Out[6]: va l a : int list = [2]

In[7]: l e t b = [3; 4; 5]

Out[7]: va l b : int list = [3; 4; 5]

In[8]: a::b (* Q: what does this return? *)

Out: Line 1, characters 5-6:
1 | a :: b

^
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



Cons vs append, continued

Question 3b: How to concatenate a and b?

Question 3c: How can we redefine b so that a :: b works?

In[9]: a @ b

Out[9]: - : int list = [2; 3; 4; 5]

In[10]: l e t b = [b]

Out[10]: va l b : int list list = [[3; 4; 5]]

In[11]: a::b

Out[11]: - : int list list = [[2]; [3, 4, 5]]



A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >



A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >



A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >



A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >



A Note on Notation: match vs function

In[12]: l e t rec append1 = funct ion
| ([], ys) -> ys
| (x::xs, ys) -> x :: append1 (xs, ys)

Out[12]: va l append1 : ’a list * ’a list -> ’a list = < fun >

In[13]: l e t rec append2 pair =
match pair with
| ([], ys) -> ys
| (x::xs, ys) -> x :: append2 (xs, ys)

Out[13]: va l append2 : ’a list * ’a list -> ’a list = < fun >



A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs , ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >



A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >



A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >



A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >



A Note on Notation: Multiple vs Single match

In[14]: l e t rec append3 xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> x :: append3 xs ys

Out[14]: va l append3 : ’a list -> ’a list -> ’a list = < fun >

In[15]: l e t rec append4 xs ys =
match xs with
| [] -> ys
| x::xs -> x :: append4 xs ys

Out[15]: va l append4 : ’a list -> ’a list -> ’a list = < fun >



Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"



Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"



Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"



Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"



Lists, Strings, and Characters

Character constants
’A’ ’"’

String constants
"A" "B" "Oh, no!"

In[16]: String.length "abcde"

Out[16]: - : int = 5

In[17]: "Oh ," ^ " no!" (* concatenation *)

Out[17]: - : string = "Oh , no!"


