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Question 3: What do we call a function whose computation does not nest?
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Question 1: What does this return?

7~

In[1]: 3 + -0.2

Qut: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

0O(n?)

Question 3: What do we call a function whose computation does not nest?

[terative or tail-recursive
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A list is a finite sequence of elements

The elements may have any type

All elements must have same type
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A list is a finite sequence of elements

The elements may have any type

All elements must have same type

[3; 5; 9]

- : int list = [3; 5; 9]

[C31; C1; [5; 611

- : int list list = [[31; [1; [5; 611
[3; [51; @I

Line 1, characters 4-7:

11 [3; [5]1; 91

Error: This expression has type ’a list
but an expression was expected of type int
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let it

val it : int list

it @ [2; 10]
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it @ [2; 10]

- : int list

List.rev [(1,

"one");

(2, "two")]




it @ [2; 10]

- : int list

List.rev [(1, "one"); (2, "two")]

- : (int x string) list
= [(2, "two"); (1, "one")]




The List Primitives

We build a list using two primitives:

Example: the list [3; 5; 9] is constructed as follows:

9 = ] = [9]
5 [9] [5; 9]
3105 9 = [3 5 9




The List Primitives

Two kinds of list
is the empty list

| is the list with head x and tail |

List notation
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Internally: linked structure

Note that :: is an O(1) operation

Taking a list's head or tail takes constant time
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The List Primitives

let rec up_to m n =
if m > n then []
else m :: up_to (m + 1) n

val up_to : int -> int -> int list = <fun>
up_to 2 5
- : int list = [2; 3; 4; 5]
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- : int list = [6; 5]
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let null = function
| [1 -> true
| _::_ -> false

val null : ’a list -> bool = <fun>




Getting at the Head and Tail

Note: all three functions are polymorphic:

val null : ’a list -> bool

is a list empty?
val hd : ’a list -> ’a

head of a non-empty list

val tl : ’a list -> ’a list tail of a non-empty list
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In[13]: let rec nlength = function
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Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] 1 + nlength [5; 9]
1 + (1 + nlength [9])
1+ (1 + (1 + nlength []))
1+ (1+(1+0)
. =3

What is the time and space complexity of this function?
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Efficiently Computing the Length of a List
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let rec addlen n = function
| [ ->n

| _::xs -> addlen (n + 1) xs
val addlen : int -> ’a list -> int = <fun>
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Efficiently Computing the Length of a List
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What is the time and space complexity of this function?




