
Foundations of Computer Science
The basics of lists

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021

Warm-Up

Question 1: What does this return?

In[1]: 3 + -0.2

Out: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation does not nest?

Iterative or tail-recursive

Warm-Up

Question 1: What does this return?

In[1]: 3 + -0.2

Out: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation does not nest?

Iterative or tail-recursive

Warm-Up

Question 1: What does this return?

In[1]: 3 + -0.2

Out: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation does not nest?

Iterative or tail-recursive

Warm-Up

Question 1: What does this return?

In[1]: 3 + -0.2

Out: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation does not nest?

Iterative or tail-recursive

Warm-Up

Question 1: What does this return?

In[1]: 3 + -0.2

Out: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation does not nest?

Iterative or tail-recursive

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

A list is a finite sequence of elements
The elements may have any type
All elements must have same type

In[2]: [3; 5; 9]

Out[2]: - : int list = [3; 5; 9]

In[3]: [[3]; []; [5; 6]]

Out[3]: - : int list list = [[3]; []; [5; 6]]

In[4]: [3; [5]; 9]

Out: Line 1, characters 4-7:
1 | [3; [5]; 9]

^^^
Error: This expression has type ’a list
but an expression was expected of type int

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

Lists

In[5]: l e t it = [3; 5; 9]

Out[5]: va l it : int list = [3; 5; 9]

In[6]: it @ [2; 10]

Out[6]: - : int list = [3; 5; 9; 2; 10]

In[7]: List.rev [(1, "one"); (2, "two")]

Out[7]: - : (int * string) list
= [(2, "two"); (1, "one")]

append

reverse

The List Primitives

We build a list using two primitives:

[]
: :

Example: the list [3; 5; 9] is constructed as follows:

9 :: [] = [9]
5 :: [9] = [5; 9]

3 :: [5; 9] = [3; 5; 9]

The List Primitives

Two kinds of list

[] is the empty list

x :: l is the list with head x and tail l

List notation

[x1; x2; . . . ; xn] ≡ x1︸︷︷︸
head

:: (x2 :: · · · (xn :: []))︸ ︷︷ ︸
tail

The List Primitives

Internally: linked structure

:: :: :: :: []

1 3 5 9

tail

head

Note that :: is an O(1) operation

Taking a list’s head or tail takes constant time

The List Primitives

Internally: linked structure

:: :: :: :: []

1 3 5 9

tail

head

Note that :: is an O(1) operation

Taking a list’s head or tail takes constant time

The List Primitives

In[8]: l e t rec up_to m n =
i f m > n then []
e l s e m :: up_to (m + 1) n

Out[8]: va l up_to : int -> int -> int list = < fun >

In[9]: up_to 2 5

Out[9]: - : int list = [2; 3; 4; 5]

The List Primitives

In[8]: l e t rec up_to m n =
i f m > n then []
e l s e m :: up_to (m + 1) n

Out[8]: va l up_to : int -> int -> int list = < fun >

In[9]: up_to 2 5

Out[9]: - : int list = [2; 3; 4; 5]

The List Primitives

In[8]: l e t rec up_to m n =
i f m > n then []
e l s e m :: up_to (m + 1) n

Out[8]: va l up_to : int -> int -> int list = < fun >

In[9]: up_to 2 5

Out[9]: - : int list = [2; 3; 4; 5]

The List Primitives

In[8]: l e t rec up_to m n =
i f m > n then []
e l s e m :: up_to (m + 1) n

Out[8]: va l up_to : int -> int -> int list = < fun >

In[9]: up_to 2 5

Out[9]: - : int list = [2; 3; 4; 5]

The List Primitives

In[8]: l e t rec up_to m n =
i f m > n then []
e l s e m :: up_to (m + 1) n

Out[8]: va l up_to : int -> int -> int list = < fun >

In[9]: up_to 2 5

Out[9]: - : int list = [2; 3; 4; 5]

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

In[10]: l e t hd (x::_) = x

Warning 8: this pattern -matching is not
exhaustive.
Here is an example of a case that is not
matched:
[]

Out[10]: va l hd : ’a list -> ’a = < fun >

In[11]: List.tl [7; 6; 5]

Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: l e t null = funct ion

| [] -> true
| _::_ -> f a l s e

Out[12]: va l null : ’a list -> bool = < fun >

1st case
2nd case

Getting at the Head and Tail

Note: all three functions are polymorphic:

val null : ’a list -> bool is a list empty?
val hd : ’a list -> ’a head of a non-empty list
val tl : ’a list -> ’a list tail of a non-empty list

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Computing the Length of a List

In[13]: l e t rec nlength = funct ion
| [] -> 0
| _ :: xs -> 1 + nlength xs

Out[13]: va l nlength : ’a list -> int = < fun >

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] ⇒ 1 + nlength [5; 9]
⇒ 1 + (1 + nlength [9])
⇒ 1 + (1 + (1 + nlength []))
⇒ 1 + (1 + (1 + 0)
⇒ . . . ⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

In[14]: l e t rec addlen n = funct ion
| [] -> n
| _::xs -> addlen (n + 1) xs

Out[14]: va l addlen : int -> ’a list -> int = < fun >

In[15]: l e t length xs = addlen 0 xs

Out[15]: va l length : ’a list -> int = < fun >

length [3; 5; 9] ⇒ addlen 0 [3; 5; 9]
⇒ addlen 1 [5; 9]
⇒ addlen 2 [9]
⇒ addlen 3 []
⇒ 3

What is the time and space complexity of this function?

