Foundations of Computer Science

The basics of lists

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021

Question 1: What does this return?

7~

In[1]:

Question 2: What is the complexity of matrix addition for a square matrix of size n?

Question 3: What do we call a function whose computation does not nest?

Question 1: What does this return?

7~

In[1]: 3 + -0.2

Question 2: What is the complexity of matrix addition for a square matrix of size n?

Question 3: What do we call a function whose computation does not nest?

Question 1: What does this return?

7~

In[1]: 3 + -0.2

Qut: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

Question 3: What do we call a function whose computation does not nest?

Question 1: What does this return?

7~

In[1]: 3 + -0.2

Qut: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

0O(n?)

Question 3: What do we call a function whose computation does not nest?

Question 1: What does this return?

7~

In[1]: 3 + -0.2

Qut: Error: This expression has type float
but an expression was expected of type int
Line 1, characters 2-3:
Hint: Did you mean to use ‘+.’?

Question 2: What is the complexity of matrix addition for a square matrix of size n?

0O(n?)

Question 3: What do we call a function whose computation does not nest?

[terative or tail-recursive

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

[3; 5; 9]

- : int list

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

In[2]:
out[2]:
In[3]:

In[4]:

[3; 5; 9]
- : int list = [3; 5; 9]
[C31; [1; [5; 611

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

In[2]:
Out[2]:
In[3]:
Out[3]:
In[4]:

[3; 5; 9]

- : int list = [3; 5; 9]

[C31; C1; [5; 611

- : int list list = [[31; [1; [5; 611

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

L33

5; 9]
int list = [3; 5; 9]

[C31; [1; [5; 611

%3k

int list list = [[3]1; [1; [5; 611

[51; 9]

A list is a finite sequence of elements

The elements may have any type

All elements must have same type

[3; 5; 9]

- : int list = [3; 5; 9]

[C31; C1; [5; 611

- : int list list = [[31; [1; [5; 611
[3; [51; @I

Line 1, characters 4-7:

11 [3; [5]1; 91

Error: This expression has type ’a list
but an expression was expected of type int

In[5]:

let it

let it

val it : int list = [3; 5; 9]

let it

val it :

int list

[3;

5;

9]

let it

val it : int list

it @ [2; 10]

- : int list

it @ [2; 10]

- : int list

List.rev [(1,

"one");

(2, "two")]

it @ [2; 10]

- : int list

List.rev [(1, "one"); (2, "two")]

- : (int x string) list
= [(2, "two"); (1, "one")]

The List Primitives

We build a list using two primitives:

Example: the list [3; 5; 9] is constructed as follows:

9 =] = [9]
5 [9] [5; 9]
3105 9 = [3 5 9

The List Primitives

Two kinds of list
is the empty list

| is the list with head x and tail |

List notation

The List Primitives

Internally: linked structure

Note that :: is an O(1) operation

Taking a list's head or tail takes constant time

The List Primitives

Internally: linked structure

Note that :: is an O(1) operation

Taking a list's head or tail takes constant time

The List Primitives

The List Primitives

In[8]: let rec up_to m n =
if m > n then []
else m :: up_to (m + 1) n

The List Primitives

In[8]:

Out[8]:
In[9]:

let rec up_to m n =
if m > n then []
else m :: up_to (m + 1) n

val up_to : int -> int -> int list

<fun>

The List Primitives

let rec up_to m n =
if m > n then []
else m :: up_to (m + 1) n

val up_to : int -> int -> int list = <fun>

up_to 2 5

The List Primitives

let rec up_to m n =
if m > n then []
else m :: up_to (m + 1) n

val up_to : int -> int -> int list = <fun>
up_to 2 5
- : int list = [2; 3; 4; 5]

Getting at the Head and Tail

Getting at the Head and Tail

In[10]:

let hd (x::_)

Getting at the Head and Tail

let hd (x::_) = x
Warning 8: this pattern-matching is not

exhaustive.
Here is an example of a case that is not

matched:
(1]

Getting at the Head and Tail

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

[
Out[10]: val hd : ’a list -> ’a = <fun>

In[11]:

Getting at the Head and Tail

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

[
Out[10]: val hd : ’a list -> ’a = <fun>

In[11]: List.tl [7; 6; 5]

Getting at the Head and Tail

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

[
Out[10]: val hd : ’a list -> ’a = <fun>

In[11]: List.tl [7; 6; 5]
Out[11]: - : int list = [6; 5]

In[12]:

Getting at the Head and Tail

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

(1]

Out[10]: val hd : ’a list -> ’a = <fun>

In[11]: List.tl [7; 6; 5]
Out[11]: - : int list = [6; 5]

Pattern-matching
In[12]: let null = function
| [1 -> true
| _::_ -> false

Getting at the Head and Tail

out[10]:

In[11]:
Out[11]:

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

(1]

val hd : ’a list -> ’a = <fun>

List.tl [7; 6; 5]

- : int list = [6; 5]

Pattern-matching

In[12]:

Out[12]:

let null = function
| [1 -> true
| _::_ -> false

val null : ’a list -> bool = <fun>

Getting at the Head and Tail

out[10]:

In[11]:
Out[11]:

let hd (x::_) = x

Warning 8: this pattern-matching is not
exhaustive.

Here is an example of a case that is not
matched:

(1]

val hd : ’a list -> ’a = <fun>

List.tl [7; 6; 5]

- : int list = [6; 5]

Pattern-matching

In[12]:

Out[12]:

let null = function
| [1 -> true
| _::_ -> false

val null : ’a list -> bool = <fun>

Getting at the Head and Tail

Note: all three functions are polymorphic:

val null : ’a list -> bool

is a list empty?
val hd : ’a list -> ’a

head of a non-empty list

val tl : ’a list -> ’a list tail of a non-empty list

Computing the Length of a List

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Computing the Length of a List

In[13]:

Out[13]:

let rec nlength = function
| [1->0
| _ :: xs -> 1 + nlength xs

val nlength : ’a list -> int

<fun>

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9]

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] = 1 + nlength [5; 9]

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] = 1 + nlength [5; 9]
= 1 + (1 + nlength [9])

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] = 1 + nlength [5; 9]
= 1 + (1 + nlength [9])
= 14 (1 + (1 + nlength []))

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] 1 + nlength [5; 9]
1 + (1 + nlength [9])
1+ (1 + (1 + nlength []))
1+ (1+(1+0)

Computing the Length of a List

In[13]: let rec nlength =
| [1 ->0

Out[13]: val nlength :

function

xs -> 1 + nlength xs

’a list -> int =

<fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9]

1 + nlength [5; 9]
1 + (1 + nlength [9])
1+ (1 + (1 + nlength []))
1+ (1+(1+0)
. =3

Computing the Length of a List

In[13]: let rec nlength = function
| [1 ->0
| _ :: xs -> 1 + nlength xs

Out[13]: val nlength : ’a list -> int = <fun>

nlength [3; 5; 9] is evaluated as follows:

nlength [3; 5; 9] 1 + nlength [5; 9]
1 + (1 + nlength [9])
1+ (1 + (1 + nlength []))
1+ (1+(1+0)
. =3

What is the time and space complexity of this function?

Efficiently Computing the Length of a List

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Qut[14]: val addlen : int -> ’a list -> int = <fun>
In[15]:

Efficiently Computing the Length of a List

In[14]:

Out[14]:
In[15]:

let rec addlen n

| [->n

| _::xs -> addlen (n + 1) xs

val addlen int

let length xs =

= function

-> ’a list -> int = <fun>

addlen @ xs

Efficiently Computing the Length of a List

In[14]:

Out[14]:
In[15]:
Out[15]:

let rec addlen n

| [->n

| _::xs -> addlen (n + 1) xs

val addlen int
let length xs =

val length : ’a

= function

-> ’a list -> int = <fun>
addlen @ xs

list -> int = <fun>

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Out[14]: val addlen : int -> ’a list -> int = <fun>
In[15]: let length = addlen 0 xs
Out[15]: val length : ’a list -> int = <fun>

length [3; 5; 9]

Efficiently Computing the Length of a List

In[14]:

Out[14]:
In[15]:
Out[15]:

let rec addlen n = function
| [->n

| _::xs -> addlen (n + 1) xs
val addlen : int -> ’a list -> int = <fun>
let length = addlen 0 xs

val length : ’a list -> int = <fun>

length [3; 5; 9] = addlen 0 [3; 5; 9]

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Out[14]: val addlen : int -> ’a list -> int = <fun>
In[15]: let length xs = addlen @ xs
Out[15]: val length : ’a list -> int = <fun>

length [3; 5; 9] = addlen 0 [3; 5; 9]
= addlen 1 [5; 9]

Efficiently Computing the Length of a List

In[14]:

Out[14]:
In[15]:
Out[15]:

let rec addlen n = function
| [->n

| _::xs -> addlen (n + 1) xs
val addlen : int -> ’a list -> int = <fun>
let length xs = addlen @ xs

val length : ’a list -> int = <fun>

length [3; 5; 9] = addlen 0 [3; 5; 9]
= addlen 1 [5; 9]
= addlen 2 [9]

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Out[14]: val addlen : int -> ’a list -> int = <fun>
In[15]: let length xs = addlen @ xs
Out[15]: val length : ’a list -> int = <fun>

length [3; 5; 9] addlen
addlen
addlen
addlen

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Out[14]: val addlen : int -> ’a list -> int = <fun>
In[15]: let length xs = addlen @ xs
Out[15]: val length : ’a list -> int = <fun>

length [3; 5; 9] addlen
addlen
addlen
addlen
3

Efficiently Computing the Length of a List

In[14]: let rec addlen n = function
| [1 ->n

| _::xs -> addlen (n + 1) xs
Out[14]: val addlen : int -> ’a list -> int = <fun>
In[15]: let length xs = addlen @ xs
Out[15]: val length : ’a list -> int = <fun>

length [3; 5; 9] addlen
addlen
addlen
addlen
3

What is the time and space complexity of this function?

