Foundations of Computer Science

Lazy Lists: consuming and joining sequences

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021




Consuming a Sequence




Consuming a Sequence

In[1]: type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)




Consuming a Sequence

In[1]:

Out[1]:

type
|
I

type

’a seq
Nil
Cons of

’a seq

a * (unit -> ’a seq)

Nil

Cons of ’a x (unit -> ’a seq)




Consuming a Sequence

In[1]: type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)

Out[1]: type ’a seq = Nil | Cons of ’a * (unit -> ’a seq)

Get the first n elements as a list:
In[2]: let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ()




Consuming a Sequence

In[1]: type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)

Out[1]: type ’a seq = Nil | Cons of ’a * (unit -> ’a seq)

Get the first n elements as a list:
In[2]: let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ()

Out[2]: val get : int -> ’a seq -> ’a list = <fun>




Consuming a Sequence

In[1]: type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)

Out[1]: type ’a seq = Nil | Cons of ’a * (unit -> ’a seq)

Get the first n elements as a list:
In[2]: let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ()

Out[2]: val get : int -> ’a seq -> ’a list = <fun>




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

get 2 (from 6)




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

¥

get 2 (from 6)




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

¥

get 2 (from 6)




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) = get 2 (Cons (6, fun () -> from (6 + 1)))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) = get 2 (Cons (6, fun () -> from (6 + 1)))
= 6 :: get 1 (from (6 + 1))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) = get 2 (Cons (6, fun () -> from (6 + 1)))
= 6 :: get 1 (from (6 + 1))
= 6 :: get 1 (Cons (7, fun () -> from (7 + 1)))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) get 2 (Cons (6, fun () -> from (6 + 1)))
6 :: get 1 (from (6 + 1))
6 :: get 1 (Cons (7, fun () -> from (7 + 1)))
6 :: 7 :: get @ (from (7 + 1))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> 1]
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) get 2 (Cons (6, fun () -> from (6 + 1)))
6 :: get 1 (from (6 + 1))
6 get 1 (Cons (7, fun () -> from (7 + 1)))
6 :: 7 :: get @ (from (7 + 1))
6 7 :: get @ (Cons (8, fun () -> from (8 + 1)))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) et 2 (Cons (6, fun () -> from (6 + 1)))
get 1 (from (6 + 1))
get 1 (Cons (7, fun () -> from (7 + 1)))
7 :: get @ (from (7 + 1))
7 :: get @ (Cons (8, fun () -> from (8 + 1)))




Sample Evaluation

let rec from k = Cons (k, fun () -> from (k + 1))

let rec get n s =
match n, s with
| o, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Consumer Producer

,
K4

get 2 (from 6) et 2 (Cons (6, fun () -> from (6 + 1)))
get 1 (from (6 + 1))
get 1 (Cons (7, fun () -> from (7 + 1)))
7 :: get @ (from (7 + 1))
7 :: get @ (Cons (8, fun () -> from (8 + 1)))

L]

R




Joining Two Sequences




Joining Two Sequences

In[3]:

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x,

fun () -> appendqg (xf ()) ya)




Joining Two Sequences

In[3]: let rec appendg xq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendqg (xf ()) ya)

Out[3]: val appendq : ’a seq -> ’a seq -> ’a seq = <fun>
In[4]:




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq

| Cons (x, xf) -> Cons (x, fun () -> appendqg (xf ()) ya)

val appendq : ’a seq -> ’a seq -> ’a seq

get 5 (appendqg (from @) (from 100))

= <fun>




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendq (xf ()) yq)

appendq : ’a seq -> ’a seq -> ’a seq = <fun>
5 (appendqg (from @) (from 100))
int list = [0; 1; 2; 3; 4]




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendq (xf ()) yq)

Out[3]: val appendq : ’a seq -> ’a seq -> ’a seq = <fun>
In[4]: get 5 (appendq (from @) (from 100))
Out[4]: - : int list = [0; 1; 2; 3; 4]

A fair alternative:

In[5]: let rec interleave xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> interleave yq (xf ()))




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendq (xf ()) yq)

Out[3]: val appendq : ’a seq -> ’a seq -> ’a seq = <fun>
In[4]: get 5 (appendq (from @) (from 100))
Out[4]: - : int list = [0; 1; 2; 3; 4]

A fair alternative:

In[5]: let rec interleave xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> interleave yq (xf ()))

OQut[5]: val interleave : ’a seq -> ’a seq -> ’a seq = <fun>

In[6]:




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendq (xf ()) yq)

Out[3]: val appendq : ’a seq -> ’a seq -> ’a seq = <fun>
In[4]: get 5 (appendq (from @) (from 100))
Out[4]: - : int list = [0; 1; 2; 3; 4]

A fair alternative:

In[5]: let rec interleave xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> interleave yq (xf ()))

OQut[5]: val interleave : ’a seq -> ’a seq -> ’a seq = <fun>

In[6]: get 5 (interleave (from @) (from 100))




Joining Two Sequences

let rec appendq xgq yq =
match xg with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> appendq (xf ()) yq)

Out[3]: val appendg : ’a seq -> ’a seq -> ’a seq = <fun>
In[4]: get 5 (appendg (from @) (from 100))

Out[4]: - : int list = [0; 1; 2; 3; 4]

A fair alternative:

In[5]: let rec interleave xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> interleave yq (xf ()))

val interleave : ’a seq -> ’a seq -> ’a seq = <fun>
get 5 (interleave (from @) (from 100))

- : int list = [0;




