Foundations of Computer Science

Lazy Lists: pipelines and streams

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021

Question 1: What is the type of this function?

In[1]:

Question 2: What does cf y return?

Question 3: We have the following: let add a b = a + b
Use a partial application of add to define an increment function:

Question 1: What is the type of this function?

In[1]: let cf y x =y

Question 2: What does cf y return?

Question 3: We have the following: let add a b = a + b
Use a partial application of add to define an increment function:

Question 1: What is the type of this function?

In[1]: let cf y x =y
Out[1]: val cf : ’a -> b -> ’a = <fun>

Question 2: What does cf y return?

Question 3: We have the following: let add a b = a + b
Use a partial application of add to define an increment function:

Question 1: What is the type of this function?

In[1]: let cf y x =y
Out[1]: val cf : ’a -> b -> ’a = <fun>

Question 2: What does cf y return?

It returns a constant function.

Question 3: We have the following: let add a b = a + b
Use a partial application of add to define an increment function:

Question 1: What is the type of this function?

In[1]: let cf y x =y
Out[1]: val cf : ’a -> b -> ’a = <fun>

Question 2: What does cf y return?

It returns a constant function.

Question 3: We have the following: let add a b = a + b
Use a partial application of add to define an increment function:

let increment = add 1

Warm-Up: type inference

Question 4: What is the type of {7

let f xyz=x2z(y z)

Warm-Up: type inference

Question 4: What is the type of {7

let f xyz=x2z(y z)

2

[f has function type]

val f : ?2x > ?y -=> ?z -> 7r

Warm-Up: type inference
Question 4: What is the type of {7

let f xyz=x2z(y z)

[y has type ?z -> ?s]

val f : ?2x => (?z => ?s) > ?z => ?r

Warm-Up: type inference

Question 4: What is the type of {7

let f xyz=x2z(y z)

[x has type ?z -> ?s -> ?r]

val f : (?z > ?s > ?r) > (?z => ?s) > ?z > ?r

Warm-Up: type inference

Question 4: What is the type of {7

let f xyz=x2z(y z)

[No more information: generalize]

val f : Cz ->"’s ->"'r) > (Cz ->"’s) >’z ->"r

Warm-Up: tail recursion

Question 5: Is this function tail-recursive? Why?

let rec exists p = function
| [1 -> false
| x::xs => (p x) || exists p xs

Warm-Up: tail recursion

Question 5: Is this function tail-recursive? Why?

let rec exists p = function
| [1 -> false
| x::xs => (p x) || exists p xs

It is tail-recursive:

let rec exists p = function

| [1 -> false
| x::xs => (p x) || ((exists[@ocaml.tailcalll) p xs)

Warm-Up: tail recursion

Question 5: Is this function tail-recursive? Why?

let rec exists p = function
| [1 -> false
| x::xs => (p x) || exists p xs

It is tail-recursive:

let rec exists p = function
| [1 -> false
| x::xs => (p x) || ((exists[@ocaml.tailcalll) p xs)

Why it is tail-recursive:

let rec exists p = function
| [1 -> false
| x::xs -> if p x then true else exists p xs

Data Streams — Intro

Example: perception-action loops (basic building block of autonomy)

“S—_action_—"

decision-making and control interaction with the world

while(true)
get sensor data
act upon sensor data
repeat

r

Exhaustive search

searching for keywords

Data processing

image processing

— Sequential programs —

Data Streams — Intro

r

Control tasks

%

robot navigation

Resource allocation

mobility on demand

— Reactive programs —

Producer

A Pipeline

Filter [FilterHConsumer}

Produce sequence of items
Filter sequence in stages

Consume results as needed

Lazy lists join the stages together

Lazy Lists — or Streams

Lists of possibly infinite length

elements computed upon demand
avoids waste if there are many solutions

infinite objects are a useful abstraction
In OCaml: implement laziness by delaying evaluation of the tail

In OCaml: "streams” means input/output channels, so we use term 'sequences’

The type unit has one element: empty tuple ()

What use is ()7
() can appear in data-structures (e.g., unit-valued dictionary)
() can be the argument of a function

() can be the argument or result of a procedure (later in course)

Behaves as a tuple, is a constructor, and allowed in pattern matching:

The unit type

let £ () = ... let f = function
O ->

Delayed evaluation: [fun () -> E

Lazy Lists in OCaml

Lazy Lists in OCaml

In[2]:

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)

Lazy Lists in OCaml

In[2]: type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)
Out[2]: type ’a seq = Nil | Cons of ’a * (unit -> ’a seq)

In[3]:

Lazy Lists in OCaml

In[2]:

Out[2]:
In[3]:

type
I
I

type
let

’a seq =
Nil
Cons of ’a x (unit -> ’a seq)

a seq = Nil | Cons of ’a % (unit -> ’a seq)

head (Cons (x, _)) = x

Lazy Lists in OCaml

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)

type ’a seq = Nil | Cons of ’a x (unit -> ’a seq)

let head (Cons (x, _)) = x

Line 1, characters 9-26:

1 | let head (Cons (x, _)) = Xx;;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Lazy Lists in OCaml

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)
type ’a seq = Nil | Cons of ’a x (unit -> ’a seq)

let head (Cons (x, _)) = x

Line 1, characters 9-26:
1 | let head (Cons (x, _)) = Xx;;

AAAAAAAAAAAAAAAARN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[3]: val head : ’a seq -> ’a = <fun>

Apply xf to () to evaluate:
In[4]:

Lazy Lists in OCaml

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)
type ’a seq = Nil | Cons of ’a x (unit -> ’a seq)

let head (Cons (x, _)) = x

Line 1, characters 9-26:
1 | let head (Cons (x, _)) = Xx;;

AAAAAAAAAAAAAAAARN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[3]: val head : ’a seq -> ’a <fun>

Apply xf to () to evaluate:
In[4]: let tail (Cons (_, xf)) xf ()

Lazy Lists in OCaml

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)
type ’a seq = Nil | Cons of ’a x (unit -> ’a seq)

let head (Cons (x, _)) = x

Line 1, characters 9-26:
1 | let head (Cons (x, _)) = Xx;;

AAAAAAAAAAAAAAAARN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[3]: val head : ’a seq -> ’a <fun>
Apply xf to () to evaluate:

In[4]: let tail (Cons (_, xf)) = xf ()
Warning: (similar warning elided)

Lazy Lists in OCaml

type ’a seq =
| Nil
| Cons of ’a * (unit -> ’a seq)
type ’a seq = Nil | Cons of ’a x (unit -> ’a seq)

let head (Cons (x, _)) = x

Line 1, characters 9-26:
1 | let head (Cons (x, _)) = Xx;;

AAAAAAAAAAAAAAAARN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[3]: val head : ’a seq -> ’a <fun>
Apply xf to () to evaluate:

In[4]: let tail (Cons (_, xf)) = xf ()
Warning: (similar warning elided)

Out[4]: val tail : ’a seq -> ’'a seq = <fun>

The Infinite Sequence k, k+ 1, K+ 2, ...

The Infinite Sequence k, k+ 1, K+ 2, ...

In[5]: let rec from k = Cons (k, fun () -> from (k + 1))

In[6]:

In[7]:

In[8]:

The Infinite Sequence k, k+ 1, K+ 2, ...

In[5]: let rec from k = Cons (k, fun () -> from (k + 1))
Out[5]: val from : int -> int seq = <fun>
In[6]:

In[7]:

In[8]:

The Infinite Sequence k, k+ 1, K+ 2, ...

let rec from k = Cons (k, fun () -> from (k + 1))
val from : int -> int seq = <fun>

let it = from 1

The Infinite Sequence k, k+ 1, K+ 2, ...

rec from k = Cons (k, fun () -> from (k + 1))
from : int -> int seq = <fun>
it = from 1

it : int seq = Cons (1, <fun>)

The Infinite Sequence k, k+ 1, K+ 2, ...

rec from k = Cons (k, fun () -> from (k + 1))
from : int -> int seq = <fun>

it = from 1

it : int seq = Cons (1, <fun>)

it tail it

The Infinite Sequence k, k+ 1, K+ 2, ...

rec from k = Cons (k, fun () -> from (k + 1))
from : int -> int seq = <fun>

it = from 1

it : int seq Cons (1, <fun>)

it tail it

it : int seq Cons (2, <fun>)

The Infinite Sequence k, k+ 1, K+ 2, ...

let rec from k = Cons (k, fun () -> from (k + 1))
val from : int -> int seq = <fun>

let it = from 1

val it : int seq Cons (1, <fun>)

let it tail it

val it : int seq Cons (2, <fun>)

tail it

The Infinite Sequence k, k+ 1, K+ 2, ...

let rec from k = Cons (k, fun () -> from (k + 1))
val from : int -> int seq = <fun>

let it = from 1

val it : int seq Cons (1, <fun>)

let it tail it

val it : int seq Cons (2, <fun>)

tail it

- : int seq = Cons (3, <fun>)

The Infinite Sequence k, k+ 1, K+ 2, ...

In[5]: let rec from k = Cons (k, fun () -> from (k + 1))
Out[5]: val from : int -> int seq = <fun>
In[6]: let it = from 1
Out[6]: val it : int seq = Cons (1, <fun>)
In[7]: let it tail it
Out[7]: val it : int seq Cons (2, <fun>)
In[8]: tail it
Out[8]: - : int seq = Cons (3, <fun>)

Recall (force the evaluation):
In[9]: let tail (Cons(_, xf)) = xf ()

The Infinite Sequence k, k+ 1, K+ 2, ...

In[5]: let rec from k = Cons (k, fun () -> from (k + 1))
Out[5]: val from : int -> int seq = <fun>
In[6]: let it = from 1
Out[6]: val it : int seq = Cons (1, <fun>)
In[7]: let it tail it
Out[7]: val it : int seq Cons (2, <fun>)
In[8]: tail it
Out[8]: - : int seq = Cons (3, <fun>)

Recall (force the evaluation):
In[9]: let tail (Cons(_, xf)) = xf ()

Out[9]: val tail : ’a seq -> ’a seq

