
Foundations of Computer Science
Functional arrays

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021



Arrays

Arrays are . . .

. . . an indexed storage area for values

. . . a very common data structure alongside lists and trees in most languages.

. . . usually updated in-place and are imperative or mutable data structures.

. . . used in many classic algorithms such as the original Hoare in-place partition-sort.



Arrays

Arrays are an indexed storage area for values

list elements reached by counting from the head of the list

tree elements reached by following a path from the root

array elements uniformly designated by number (the "subscript")



Functional Arrays

Arrays are an indexed storage area for values

Let’s first consider immutable arrays

Immutable arrays are also known as functional arrays; they map integers to data.

1 7→ "Orange"
2 7→ "Apple"
3 7→ "Banana"

Updating implies copying the array to return a new version, (but pointers to old
copies remain).

Can updates be efficient?



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

(The numbers above are not the values, but the positions of array elements.)

Complexity of access to this is always O(log n) as the tree is always balanced.



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

Example: sub t 5

5 / 2 ⇝ 2

2 / 2 ⇝ 1

l e t rec sub = funct ion
| Lf , _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2 , k / 2)



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

Example: sub t 5

5 / 2 ⇝ 2

2 / 2 ⇝ 1

l e t rec sub = funct ion
| Lf , _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2 , k / 2)



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

Example: sub t 5

5 / 2 ⇝ 2

2 / 2 ⇝ 1

l e t rec sub = funct ion
| Lf , _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2 , k / 2)



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

Example: sub t 5

5 / 2 ⇝ 2

2 / 2 ⇝ 1

l e t rec sub = funct ion
| Lf , _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2 , k / 2)



Functional Trees

The path to element i follows the binary code for i (the "subscript")

O(log n) if the tree is balanced:
In[1]: l e t rec update = funct ion

| Lf , 1, w -> Br (w, Lf, Lf)
| Lf , k, w -> raise Subscript (* Gap in tree *)
| Br (v, t1 , t2), 1, w -> Br (w, t1, t2)
| Br (v, t1 , t2), k, w when k mod 2 = 0 ->

Br (v, update (t1, k / 2, w), t2)
| Br (v, t1, t2), k, w -> Br (v, t1, update (t2, k / 2, w))

Out[1]: va l update : ’a tree * int * ’a -> ’a tree = < fun >



Functional Trees

The path to element i follows the binary code for i (the "subscript")

O(log n) if the tree is balanced:
In[1]: l e t rec update = funct ion

| Lf, 1, w -> Br (w, Lf, Lf)
| Lf, k, w -> raise Subscript (* Gap in tree *)
| Br (v, t1 , t2), 1, w -> Br (w, t1, t2)
| Br (v, t1 , t2), k, w when k mod 2 = 0 ->

Br (v, update (t1, k / 2, w), t2)
| Br (v, t1 , t2), k, w -> Br (v, t1, update (t2, k / 2, w))

Out[1]: va l update : ’a tree * int * ’a -> ’a tree = < fun >



Functional Trees

The path to element i follows the binary code for i (the "subscript")

O(log n) if the tree is balanced:
In[1]: l e t rec update = funct ion

| Lf, 1, w -> Br (w, Lf, Lf)
| Lf, k, w -> raise Subscript (* Gap in tree *)
| Br (v, t1 , t2), 1, w -> Br (w, t1, t2)
| Br (v, t1 , t2), k, w when k mod 2 = 0 ->

Br (v, update (t1, k / 2, w), t2)
| Br (v, t1 , t2), k, w -> Br (v, t1, update (t2, k / 2, w))

Out[1]: va l update : ’a tree * int * ’a -> ’a tree = < fun >



Functional Trees

The path to element i follows the binary code for i (the "subscript")

1

3

7

1511

5

139

2

6

1410

4

128

15 = 0b1111 (right, right, right, here)
12 = 0b1100 (left, left, right, here)
11 = 0b1011 (right, right, left, here)



Complexity of Dictionary Data Structures

Linear search Most general, needing only equality on keys,
but inefficient (linear time)

Binary search Needs an ordering on keys.
O(log n) in the average case,
binary search trees are O(n) in the worst case.

Array subscripting Least general, requiring keys to be integers,
but even worst-case time is O(log n).


