Foundations of Computer Science

Functional arrays

Dr. Robert Harle \& Dr. Jeremy Yallop

2020-2021

Arrays are ...
....an indexed storage area for values
....a very common data structure alongside lists and trees in most languages.
. . . usually updated in-place and are imperative or mutable data structures.
... used in many classic algorithms such as the original Hoare in-place partition-sort.

Arrays are an indexed storage area for values
list elements reached by counting from the head of the list
tree elements reached by following a path from the root
array elements uniformly designated by number (the "subscript")

Arrays are an indexed storage area for values

Let's first consider immutable arrays
Immutable arrays are also known as functional arrays; they map integers to data.

$$
\begin{array}{lll}
1 & \mapsto & \text { "Orange" } \\
2 & \mapsto & \text { "Apple" } \\
3 & \mapsto & \text { "Banana" }
\end{array}
$$

Updating implies copying the array to return a new version, (but pointers to old copies remain).

Can updates be efficient?

The path to element i follows the binary code for i (the "subscript")

(The numbers above are not the values, but the positions of array elements.)
Complexity of access to this is always $O(\log n)$ as the tree is always balanced.

The path to element i follows the binary code for i (the "subscript")


```
let rec sub = function
| Lf, _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2, k / 2)
```

The path to element i follows the binary code for i (the "subscript")


```
let rec sub = function
| Lf, _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2, k / 2)
```

The path to element i follows the binary code for i (the "subscript")


```
let rec sub = function
| Lf, _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2, k / 2)
```

The path to element i follows the binary code for i (the "subscript")


```
let rec sub = function
| Lf, _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2, k / 2)
```


Functional Trees

The path to element i follows the binary code for i (the "subscript")
$O(\log n)$ if the tree is balanced: In[1]:

Functional Trees

The path to element i follows the binary code for i (the "subscript")
$O(\log n)$ if the tree is balanced:

In[1]: let rec update $=$ function

| Lf, 1, w -> Br (w, Lf, Lf)
| Lf, k, w -> raise Subscript (* Gap in tree *)
| Br (v, t1, t2), 1, w -> Br (w, t1, t2)
| $\mathrm{Br}(\mathrm{v}, \mathrm{t} 1, \mathrm{t} 2), \mathrm{k}, \mathrm{w}$ when $\mathrm{k} \bmod 2=0$->
Br (v, update (t1, k / 2, w), t2)
| $\operatorname{Br}(v, t 1, ~ t 2), k, w ~->~ B r ~(v, ~ t 1, ~ u p d a t e ~(t 2, ~ k ~ / ~ 2, ~ w)) ~(~) ~$

Functional Trees

The path to element i follows the binary code for i (the "subscript")
$O(\log n)$ if the tree is balanced:

In[1]: let rec update $=$ function

| Lf, 1, w -> Br (w, Lf, Lf)
| Lf, k, w -> raise Subscript (* Gap in tree *)
| Br (v, t1, t2), 1, w -> Br (w, t1, t2)
| $\mathrm{Br}(\mathrm{v}, \mathrm{t} 1, \mathrm{t} 2), \mathrm{k}, \mathrm{w}$ when $\mathrm{k} \bmod 2=0->$
Br (v, update (t1, k / 2, w), t2)

Out[1]: val update : 'a tree * int * 'a -> 'a tree = <fun>

The path to element i follows the binary code for i (the "subscript")

Complexity of Dictionary Data Structures

Linear search Most general, needing only equality on keys, but inefficient (linear time)

Binary search Needs an ordering on keys. $O(\log n)$ in the average case, binary search trees are $O(n)$ in the worst case.

Array subscripting Least general, requiring keys to be integers, but even worst-case time is $O(\log n)$.

