Foundations of Computer Science

Exceptions and error handling

Dr. Robert Harle & Dr. Jeremy Yallop
2020-2021




During a computation, what if something goes wrong?

Exceptions

(* division by zero x)

hd [1 (x pattern matching falure x)

Exception handling allows us to recover from these.

Raising an exception abandons the current expression

raise Failure

Handling the exception attempts an alternative

try f () with Failure -> g ()




Exceptions

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

In[1]: exception Failure

In[2]:

In[3]:

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

In[1]: exception Failure
Out[1]: exception Failure
In[2]:

In[3]:

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

In[1]: exception Failure
Out[1]: exception Failure

In[2]: exception NoChange of int

In[3]:

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

exception Failure
exception Failure
exception NoChange of int

exception NoChange of int

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

exception Failure
exception Failure
exception NoChange of int
exception NoChange of int

raise Failure

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

exception Failure
exception Failure
exception NoChange of int
exception NoChange of int
raise Failure

Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.




Exceptions

Install exception handler for enclosing block:
In[4]:

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.




Exceptions

Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->
print_endline "handled a NoChange exception”

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.




Exceptions

Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->

print_endline "handled a NoChange exception”
Line 3, characters 5-23:

Warning 21: this statement never returns
(or has an unsound type.)

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.




Exceptions

Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->

print_endline "handled a NoChange exception”
Line 3, characters 5-23:

Warning 21: this statement never returns
(or has an unsound type.)

pre exception
handled a NoChange exception
- : unit = ()

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.




Change with backtracking




Change with backtracking

In[5]:

In[6]:

exception Change




Change with backtracking

In[5]:
Out[5]:
In[6]:

exception Change

exception Change




Change with backtracking

In[5]: exception Change
Out[5]: exception Change

In[6]: let rec change till amt =
match till, amt with
| -, 0 -> []
| [1, _ -> raise Change (* Backtrack x)
| c::till, amt ->
if amt < @ then raise Change (* Backtrack x)
else
try (* Attempt the solution =)
c :: change (c::till) (amt - ¢)
with Change ->
(* Remove some change and retry if stuck =)
change till amt




Change with backtracking

exception Change
exception Change

let rec change till amt =
match till, amt with
| -, 0 -> []
| [1, _ -> raise Change (* Backtrack =)
| c::till, amt ->
if amt < @ then raise Change (* Backtrack x)
else
try (* Attempt the solution =)
c :: change (c::till) (amt - ¢)
with Change ->
(* Remove some change and retry if stuck =)
change till amt

val change : int list -> int -> int list = <fun>




Change with backtracking

change [5; 2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6
= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6
= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6
= try 5::(change [2] 1) with Change -> change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6
= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6
= try 5::(change [2] 1) with Change -> change [2] 6
= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6
= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6
= try 5::(change [2] 1) with Change -> change [2] 6
= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6
= try 5::(change [] 1) with Change -> change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6

= try 2::(try 2::change [2] 2 with Change -> change [] 4)
with Change -> change [] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6

= try 2::(try 2::change [2] 2 with Change -> change [] 4)
with Change -> change [] 6

= try 2::(try 2::(try 2::change [2] @ with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6

= try 2::(try 2::change [2] 2 with Change -> change [] 4)
with Change -> change [] 6

= try 2::(try 2::(try 2::change [2] @ with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

= try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6

= try 2::(try 2::change [2] 2 with Change -> change [] 4)
with Change -> change [] 6

= try 2::(try 2::(try 2::change [2] @ with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

= try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

= try 2::[2; 2] with Change -> change [] 6




Change with backtracking

change [5; 2] 6 = try 5::change [5; 2] 1 with Change -> change [2] 6

= try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)
with Change -> change [2] 6

= try 5::(change [2] 1) with Change -> change [2] 6

= try 5::(try 2::change [2] (-1) with Change -> change [] 1)
with Change -> change [2] 6

= try 5::(change [] 1) with Change -> change [2] 6

= change [2] 6

= try 2::change [2] 4 with Change -> change [] 6

= try 2::(try 2::change [2] 2 with Change -> change [] 4)
with Change -> change [] 6

= try 2::(try 2::(try 2::change [2] @ with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

= try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

= try 2::[2; 2] with Change -> change [] 6

=[2; 2; 2]




