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During a computation, what if something goes wrong?

Exceptions

(* division by zero x)

hd [1 (x pattern matching falure x)

Exception handling allows us to recover from these.

Raising an exception abandons the current expression

raise Failure

Handling the exception attempts an alternative

try f () with Failure -> g ()
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Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.
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exception Failure
exception Failure
exception NoChange of int
exception NoChange of int
raise Failure

Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.
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Install exception handler for enclosing block:
In[4]:

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.
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Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->
print_endline "handled a NoChange exception”
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Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->

print_endline "handled a NoChange exception”
Line 3, characters 5-23:

Warning 21: this statement never returns
(or has an unsound type.)
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Exceptions

Install exception handler for enclosing block:
In[4]: try
print_endline "pre exception”;
raise (NoChange 1);
print_endline "post exception”;
with NoChange _ ->

print_endline "handled a NoChange exception”
Line 3, characters 5-23:

Warning 21: this statement never returns
(or has an unsound type.)

pre exception
handled a NoChange exception
- : unit = ()

. J

raise dynamically jumps to the nearest try/with handler that matches that exception

OCaml does not mark functions to indicate that exceptions might be raised.
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Change with backtracking

In[5]: exception Change
Out[5]: exception Change

In[6]: let rec change till amt =
match till, amt with
| -, 0 -> []
| [1, _ -> raise Change (* Backtrack x)
| c::till, amt ->
if amt < @ then raise Change (* Backtrack x)
else
try (* Attempt the solution =)
c :: change (c::till) (amt - ¢)
with Change ->
(* Remove some change and retry if stuck =)
change till amt




Change with backtracking

exception Change
exception Change

let rec change till amt =
match till, amt with
| -, 0 -> []
| [1, _ -> raise Change (* Backtrack =)
| c::till, amt ->
if amt < @ then raise Change (* Backtrack x)
else
try (* Attempt the solution =)
c :: change (c::till) (amt - ¢)
with Change ->
(* Remove some change and retry if stuck =)
change till amt

val change : int list -> int -> int list = <fun>
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