
Foundations of Computer Science
Exceptions and error handling

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021



Exceptions
During a computation, what if something goes wrong?

3 / 0 (* division by zero *)

hd [] (* pattern matching falure *)

Exception handling allows us to recover from these.
Raising an exception abandons the current expression

raise Failure

Handling the exception attempts an alternative

t ry f () with Failure -> g ()



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

In[1]: exception Failure

Out[1]: exception Failure

In[2]: exception NoChange of int

Out[2]: exception NoChange of int

In[3]: raise Failure

Out: Exception: Failure.

Each exception declaration introduces a distinct type of exception that can be handled
separately.

Exceptions are like enumerations and can have data attached to them.



Exceptions

Install exception handler for enclosing block:
In[4]: t ry

print_endline "pre exception ";
raise (NoChange 1);
print_endline "post exception ";

with NoChange _ ->
print_endline "handled a NoChange exception "

Line 3, characters 5-23:
Warning 21: this statement never returns

(or has an unsound type.)

Out[4]: pre exception
handled a NoChange exception
- : unit = ()

raise dynamically jumps to the nearest try/with handler that matches that exception
OCaml does not mark functions to indicate that exceptions might be raised.



Exceptions

Install exception handler for enclosing block:
In[4]: t ry

print_endline "pre exception ";
raise (NoChange 1);
print_endline "post exception ";

with NoChange _ ->
print_endline "handled a NoChange exception "

Line 3, characters 5-23:
Warning 21: this statement never returns

(or has an unsound type.)

Out[4]: pre exception
handled a NoChange exception
- : unit = ()

raise dynamically jumps to the nearest try/with handler that matches that exception
OCaml does not mark functions to indicate that exceptions might be raised.



Exceptions

Install exception handler for enclosing block:
In[4]: t ry

print_endline "pre exception ";
raise (NoChange 1);
print_endline "post exception ";

with NoChange _ ->
print_endline "handled a NoChange exception "

Line 3, characters 5-23:
Warning 21: this statement never returns

(or has an unsound type.)

Out[4]: pre exception
handled a NoChange exception
- : unit = ()

raise dynamically jumps to the nearest try/with handler that matches that exception
OCaml does not mark functions to indicate that exceptions might be raised.



Exceptions

Install exception handler for enclosing block:
In[4]: t ry

print_endline "pre exception ";
raise (NoChange 1);
print_endline "post exception ";

with NoChange _ ->
print_endline "handled a NoChange exception "

Line 3, characters 5-23:
Warning 21: this statement never returns

(or has an unsound type.)

Out[4]: pre exception
handled a NoChange exception
- : unit = ()

raise dynamically jumps to the nearest try/with handler that matches that exception
OCaml does not mark functions to indicate that exceptions might be raised.



Change with backtracking

In[5]: exception Change

Out[5]: exception Change

In[6]: l e t rec change till amt =
match till , amt with
| _, 0 -> []
| [], _ -> raise Change (* Backtrack *)
| c::till , amt ->

i f amt < 0 then raise Change (* Backtrack *)
e l s e

t ry (* Attempt the solution *)
c :: change (c::till) (amt - c)

with Change ->
(* Remove some change and retry if stuck *)
change till amt

Out[6]: va l change : int list -> int -> int list = < fun >



Change with backtracking

In[5]: exception Change

Out[5]: exception Change

In[6]: l e t rec change till amt =
match till , amt with
| _, 0 -> []
| [], _ -> raise Change (* Backtrack *)
| c::till , amt ->

i f amt < 0 then raise Change (* Backtrack *)
e l s e

t ry (* Attempt the solution *)
c :: change (c::till) (amt - c)

with Change ->
(* Remove some change and retry if stuck *)
change till amt

Out[6]: va l change : int list -> int -> int list = < fun >



Change with backtracking

In[5]: exception Change

Out[5]: exception Change

In[6]: l e t rec change till amt =
match till , amt with
| _, 0 -> []
| [], _ -> raise Change (* Backtrack *)
| c::till , amt ->

i f amt < 0 then raise Change (* Backtrack *)
e l s e

t ry (* Attempt the solution *)
c :: change (c::till) (amt - c)

with Change ->
(* Remove some change and retry if stuck *)
change till amt

Out[6]: va l change : int list -> int -> int list = < fun >



Change with backtracking

In[5]: exception Change

Out[5]: exception Change

In[6]: l e t rec change till amt =
match till , amt with
| _, 0 -> []
| [], _ -> raise Change (* Backtrack *)
| c::till , amt ->

i f amt < 0 then raise Change (* Backtrack *)
e l s e

t ry (* Attempt the solution *)
c :: change (c::till) (amt - c)

with Change ->
(* Remove some change and retry if stuck *)
change till amt

Out[6]: va l change : int list -> int -> int list = < fun >



Change with backtracking

In[5]: exception Change

Out[5]: exception Change

In[6]: l e t rec change till amt =
match till , amt with
| _, 0 -> []
| [], _ -> raise Change (* Backtrack *)
| c::till , amt ->

i f amt < 0 then raise Change (* Backtrack *)
e l s e

t ry (* Attempt the solution *)
c :: change (c::till) (amt - c)

with Change ->
(* Remove some change and retry if stuck *)
change till amt

Out[6]: va l change : int list -> int -> int list = < fun >



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]



Change with backtracking

change [5; 2] 6 ⇒ try 5::change [5; 2] 1 with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4) with Change -> change [2] 1)

with Change -> change [2] 6

⇒ try 5::(change [2] 1) with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1) with Change -> change [] 1)

with Change -> change [2] 6

⇒ try 5::(change [] 1) with Change -> change [2] 6

⇒ change [2] 6

⇒ try 2::change [2] 4 with Change -> change [] 6

⇒ try 2::(try 2::change [2] 2 with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0 with Change -> change [] 2)

with Change -> change [] 4)

with Change -> change [] 6

⇒ try 2::(try 2::[2] with Change -> change [] 4) with Change -> change [] 6

⇒ try 2::[2; 2] with Change -> change [] 6

⇒ [2; 2; 2]


