
Foundations of Computer Science
Enumerations and simple data types

Dr. Robert Harle & Dr. Jeremy Yallop

2020–2021

Datatypes and trees

type vehicle =
Bike

| Motorbike
| ...

Custom types

exception NoChange

Exceptions

type t =
Null

| Join of t * t

Recursive types

Custom Types

This lecture introduces a powerful and distinctive feature of ML-style languages:

custom datatypes

With custom datatypes we can precisely describe the values used in our programs

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

Let’s describe a vehicle

In[1]: l e t number_of_wheels = funct ion
"bike" -> 2

| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18
Warning 8: this pattern -matching is not
exhaustive. Here is an example of a case
that is not matched: ""

Out[1]: va l number_of_wheels : string -> int = < fun >

In[2]: number_of_wheels "bike"

Out[2]: - : int = 2

In[3]: number_of_wheels "motorbke"

Out: Exception: Match_failure ("// toplevel //", 1, 23).

How can we make illegal states unrepresentable?

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

An Enumeration Type

type vehicle = Bike
| Motorbike
| Car
| Lorry

We have declared a new type vehicle

Instead of representing any string it can only contain the four constants defined.

These four constants become the constructors of the vehicle type

The representation in memory is more efficient than using strings.

Adding new types of vehicles is straightforward by extending the definitions.

Different custom types cannot be intermixed, unlike strings or integers.

Declaring functions on vehicles

In[4]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[4]: va l wheels : vehicle -> int = < fun >

In[5]: l e t wheels = funct ion
| "bike" -> 2
| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18

Out[5]: va l wheels : string -> int = < fun >

Declaring functions on vehicles

In[4]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[4]: va l wheels : vehicle -> int = < fun >

In[5]: l e t wheels = funct ion
| "bike" -> 2
| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18

Out[5]: va l wheels : string -> int = < fun >

Declaring functions on vehicles

In[4]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[4]: va l wheels : vehicle -> int = < fun >

In[5]: l e t wheels = funct ion
| "bike" -> 2
| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18

Out[5]: va l wheels : string -> int = < fun >

Declaring functions on vehicles

In[4]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[4]: va l wheels : vehicle -> int = < fun >

In[5]: l e t wheels = funct ion
| "bike" -> 2
| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18

Out[5]: va l wheels : string -> int = < fun >

Declaring functions on vehicles

In[4]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[4]: va l wheels : vehicle -> int = < fun >

In[5]: l e t wheels = funct ion
| "bike" -> 2
| "motorbike" -> 2
| "car" -> 4
| "lorry" -> 18

Out[5]: va l wheels : string -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles

Adding new vehicle types is straightforward: extend the definitions and fix warnings.

In[6]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[6]: va l wheels : vehicle -> int = < fun >

In[7]: l e t wheels = funct ion
| Bike -> 2
| Motorbike -> 2
| Car -> 4
Warning 8: this pattern -matching is not exhaustive.
Here is an example of a case that is not matched:
Lorry

Out[7]: va l wheels : vehicle -> int = < fun >

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles
OCaml generalises the notion of enumeration types to allow data to be stored
alongside each variant.

type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

In[8]: Bike

Out[8]: - : vehicle = Bike

In[9]: Motorbike 25

Out[9]: - : vehicle = Motorbike 25

In[10]: Car true

Out[10]: - : vehicle = Car true

Declaring functions on vehicles

type vehicle =
| Bike
| Motorbike of int (* engine size in CCs *)
| Car of bool (* true if a Reliant Robin *)
| Lorry of int (* number of wheels *)

Even though the constructors have different data, they are all of type vehicle when
wrapped by the constructor.

In[11]: [Bike; Car true ; Motorbike 450]

Out[11]: - : vehicle list

Declaring functions on vehicles

type vehicle =
| Bike
| Motorbike of int (* engine size in CCs *)
| Car of bool (* true if a Reliant Robin *)
| Lorry of int (* number of wheels *)

Even though the constructors have different data, they are all of type vehicle when
wrapped by the constructor.

In[11]: [Bike; Car true ; Motorbike 450]

Out[11]: - : vehicle list

Declaring functions on vehicles

type vehicle =
| Bike
| Motorbike of int (* engine size in CCs *)
| Car of bool (* true if a Reliant Robin *)
| Lorry of int (* number of wheels *)

Even though the constructors have different data, they are all of type vehicle when
wrapped by the constructor.

In[11]: [Bike; Car true ; Motorbike 450]

Out[11]: - : vehicle list

A finer wheel computation

l e t wheels = funct ion
| Bike -> 2
| Motorbike _ -> 2
| Car robin -> i f robin then 3 e l s e 4
| Lorry w -> w

A Bike has two wheels.

A Motorbike has two wheels.

A Reliant Robin has three wheels; all other cars have four.

A Lorry has the number of wheels stored with its constructor.

