2001 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml
To represent the power series $\sum_{i=0}^{\infty} a_{i} x^{i}$ in a computer amounts to representing the coefficients $a_{0}, a_{1}, a_{2}, \ldots$ One possible representation is by a function of type int->real that returns the coefficient a_{i} given i as an argument. An alternative representation is the following type:

```
type power = Cons of float * (unit -> power)
```

(a) Demonstrate the two representations by using each of them to implement these two power series:
(i) The constant power series c, with $a_{0}=c$ and $a_{i}=0$ for $i>0$. [3 marks]
(ii) The Taylor series $\sum_{i=0}^{\infty} x^{i} / i$! for the exponential function. [4 marks]
(b) Also implement (using both representations) each of the following operations on power series:
(i) Product with a scalar, given by $c \cdot\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=\sum_{i=0}^{\infty}\left(c a_{i}\right) x^{i}$. [3 marks]
(ii) Sum, given by $\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)+\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}$. [4 marks]
(iii) The product $\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right) \times\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)$, where the i th coefficient of the result is $a_{0} b_{i}+a_{1} b_{i-1}+\cdots+a_{i} b_{0}$.

You may assume the OCaml function float_of_int of type int -> float that maps an integer to the equivalent real number.

