
1995 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Describe and compare the call-by-value, call-by-name, and call-by-need evaluation
strategies for functional programming languages.

The OCaml function butlast removes the last element from a non-empty list:

exception Butlast

let rec butlast = function

| [] -> raise Butlast

| [] -> []

| (x::xs) -> x::(butlast xs)

Show how the evaluation of butlast [[1; 2]; []; [3]; [4; 5]] proceeds in
OCaml.

Write an iterative version of butlast (i.e. one in which the recursive function calls
are tail recursive). You may assume the existence of the append (@) function.

State with justification the time complexity of your function.

An OCaml variant type of lazy lists can be defined by:

type 'a lazy list = Nil | Cons of unit -> 'a * 'a lazy list

An ‘infinite’ list of increasing integers can be generated by the function infinite

below:

let rec infinite n = Cons (fun () -> (n, infinite (n + 1)))

Write a version of butlast for lazy lists which terminates when applied to an
infinite lazy list such as infinite 0.

Can an iterative version of this function be written that still terminates on infinite
lazy lists? Explain your reasoning.

[20 marks]

1

