
Foundations of Computer Science (2020-2021)

Robert Harle, Jeremy Yallop, David Allsopp, Jon Ludlam

University of Cambridge Computer Laboratory
Version 1.2

September 25, 2020

Contents

1 Lecture 1: Introduction to Programming 5
1.1 Basic Concepts in Computer Science . 5
1.2 Goals of Programming . 6
1.3 Why Program in OCaml? . 7
1.4 A first session with OCaml . 8
1.5 Raising a Number to a Power . 9
1.6 Efficiently Raising a Number to a Power . 10

2 Lecture 2: Recursion and Efficiency 13
2.1 Expression Evaluation . 13
2.2 Summing the first n integers . 13
2.3 Iteratively summing the first n integers . 14
2.4 Recursion vs Iteration . 14
2.5 Silly Summing the First n Integers . 15
2.6 Comparing Algorithms: O Notation . 16
2.7 Simple Facts About O Notation . 17
2.8 Common Complexity Classes . 17
2.9 Sample costs in O notation . 18
2.10 Some Simple Recurrence Relations . 18

3 Lecture 3: Lists 21
3.1 The List Primitives . 22
3.2 Getting at the Head and Tail . 22
3.3 Computing the Length of a List . 24
3.4 Efficiently Computing the Length of a List . 25
3.5 Append: List Concatenation . 26

1

3.6 Reversing a List in O(n2) . 27
3.7 Reversing a List in O(n) . 27
3.8 Lists, Strings and Characters . 28

4 Lecture 4: More on Lists 31
4.1 List Utilities: take and drop . 31
4.2 Linear Search . 32
4.3 Equality Tests . 32
4.4 Building a List of Pairs . 33
4.5 Building a Pair of Results . 34
4.6 An Application: Making Change . 34
4.7 All Ways of Making Change . 35
4.8 All Ways of Making Change — Faster! . 36

5 Lecture 5: Sorting 38
5.1 How Fast Can We Sort? . 38
5.2 Insertion Sort . 40
5.3 Quicksort: The Idea . 41
5.4 Quicksort: The Code . 41
5.5 Append-Free Quicksort . 42
5.6 Merging Two Lists . 43
5.7 Top-down Merge sort . 43
5.8 Summary of Sorting Algorithms . 44

6 Lecture 6: Datatypes and Trees 46
6.1 An Enumeration Type . 46
6.2 Declaring a Function on Vehicles . 47
6.3 A Datatype whose Constructors have Arguments . 47
6.4 A Finer Wheel Computation . 48
6.5 Error Handling: Exceptions . 48
6.6 Exceptions in OCaml . 49
6.7 Making Change with Exceptions . 50
6.8 Making Change: A Trace . 51
6.9 Binary Trees, a Recursive Datatype . 52
6.10 Basic Properties of Binary Trees . 53

7 Lecture 7: Dictionaries and Functional Arrays 56
7.1 Dictionaries . 56
7.2 Binary Search Trees . 57
7.3 Lookup: Seeks Left or Right . 57
7.4 Update . 58
7.5 Aside: Traversing Trees (3 Methods) . 59
7.6 Efficiently Traversing Trees . 60
7.7 Arrays . 60
7.8 Functional Arrays as Binary Trees . 61
7.9 The Lookup Function . 62
7.10 The Update Function . 62

2

8 Lecture 8: Functions as Values 65
8.1 Functions Without Names . 66
8.2 Curried Functions . 66
8.3 Shorthand for Curried Functions . 68
8.4 Partial Application: A Curried Insertion Sort . 69
8.5 map: the “Apply to All” Function . 70
8.6 Example: Matrix Transpose . 70
8.7 Review of Matrix Multiplication . 71
8.8 Matrix Multiplication in OCaml . 72
8.9 List Functionals for Predicates . 72
8.10 Applications of the Predicate Functionals . 73

9 Lecture 9: Sequences, or Lazy Lists 76
9.1 A Pipeline . 76
9.2 Lazy Lists (or Streams) . 76
9.3 Lazy Lists in OCaml . 77
9.4 The Infinite Sequence: k, k + 1, k + 2, . 78
9.5 Consuming a Sequence . 79
9.6 Sample Evaluation . 79
9.7 Joining Two Sequences . 79
9.8 Functionals for Lazy Lists . 80
9.9 Numerical Computations on Infinite Sequences . 81

10 Lecture 10: Queues and Search Strategies 84
10.1 Breadth-First v Depth-First Tree Traversal . 84
10.2 Breadth-First Tree Traversal — Using Append . 84
10.3 An Abstract Data Type: Queues . 85
10.4 Efficient Functional Queues: Idea . 85
10.5 Efficient Functional Queues: Code . 86
10.6 Breadth-First Tree Traversal — Using Queues . 87
10.7 Iterative deepening: Another Exhaustive Search . 88
10.8 Another Abstract Data Type: Stacks . 88
10.9 A Survey of Search Methods . 89

11 Lecture 11: Elements of Procedural Programming 91
11.1 Procedural Programming . 91
11.2 OCaml Primitives for References . 91
11.3 Trying Out References . 92
11.4 Commands: Expressions with Effects . 93
11.5 Iteration: the while command . 93
11.6 Private, Persistent References . 94
11.7 Two Bank Accounts . 95
11.8 OCaml Primitives for Arrays . 96
11.9 Array Examples . 97
11.10 References: OCaml vs conventional languages . 98

3

This course has two aims. The first is to teach programming. The second is to present some
fundamental principles of computer science, especially algorithm design. Most students will have
some programming experience already, but there are few people whose programming cannot be
improved through greater knowledge of basic principles. Please bear this point in mind if you
have extensive experience and find parts of the course rather slow.

The programming in this course is based on the language OCaml and mostly concerns the func-
tional programming style. Functional programs tend to be shorter and easier to understand than
their counterparts in conventional languages such as C. In the space of a few weeks, we shall cover
many fundamental data structures and learn basic methods for estimating efficiency.

The first thing you will notice about this course is that there is an interactive version hosted online
at https://hub.cl.cam.ac.uk/, where you can login with your Cambridge Raven identity and
edit the code fragments in your browser. You are encouraged to do so – such edits will only
persist in your session, and will help you to explore the world of functional programming. If you
are using the web-based version, then you need to know a few concepts:

• The notebook consists of a sequence of textual and code snippets.
• The code snippets can be executed individually, and will “remember” the results of the

previous snippets.
• To begin with, click on Cell / Run All in the menu to execute the entire notebook.
• You can later double click on any cell and modify its contents, and press Shift+Enter to

reevaluate its contents. This will only modify the current cell, so you will have to Run All
again to see the effects on the whole notebook.

• While editing longer snippets, you can also press Shift+Tab while typing to get more docu-
mentation hints about the code you are writing.

This course is lectured by Robert Harle and Jeremy Yallop. These notes are translated from
Lawrence C. Paulson’s earlier course on Standard ML, which had credits to David Allsopp, Stuart
Becker, Gavin Bierman, Chloë Brown, Silas Brown, Qi Chen, David Cottingham, William Den-
man, Robert Harle, Daniel Hulme, Frank King, Jack Lawrence-Jones, Joseph Lord, Dimitrios Los,
Farhan Mannan, James Margetson, David Morgan, Alan Mycroft, Sridhar Prabhu, Frank Stajano,
Thomas Tuerk, Xincheng Wang, Philip Withnall and Assel Zhiyenbayeva for pointing out errors.
The current notes have been ported to OCaml in 2019 by David Allsopp, Jon Ludlam and Anil
Madhavapeddy, with feedback from Richard Sharp.

Some books that are complementary to this course are:

• OCaml from the Very Beginning by John Whitington.

4

https://ocaml.org
https://hub.cl.cam.ac.uk/
http://ocaml-book.com

Chapter 1

Lecture 1: Introduction to Programming

1.1 Basic Concepts in Computer Science

• Computers: a child can use them; nobody can fully understand them!
• We can master complexity through levels of abstraction.
• Focus on 2 or 3 levels at most!

Recurring issues:

• what services to provide at each level
• how to implement them using lower-level services
• the interface: how the two levels should communicate

A basic concept in computer science is that large systems can only be understood in levels, with
each level further subdivided into functions or services of some sort. The interface to the higher
level should supply the advertised services. Just as important, it should block access to the means
by which those services are implemented. This abstraction barrier allows one level to be changed
without affecting levels above. For example, when a manufacturer designs a faster version of a
processor, it is essential that existing programs continue to run on it. Any differences between the
old and new processors should be invisible to the program.

Modern processors have elaborate specifications, which still sometimes leave out important de-
tails. In the old days, you then had to consult the circuit diagrams.

1.1.1 Example 1: Dates

• Abstract level: dates over a certain interval
• Concrete level: typically 6 characters: YYMMDD (where each character is represented by 8 bits)
• Date crises caused by inadequate internal formats:

– Digital’s PDP-10: using 12-bit dates (good for at most 11 years)
– 2000 crisis: 48 bits could be good for lifetime of universe!

Digital Equipment Corporation’s date crisis occurred in 1975. The PDP-10 was a 36-bit mainframe
computer. It represented dates using a 12-bit format designed for the tiny PDP-8. With 12 bits,
one can distinguish 212 = 4096 days or 11 years.

5

The most common industry format for dates uses six characters: two for the year, two for the
month and two for the day. The most common “solution” to the year 2000 crisis is to add two
further characters, thereby altering file sizes. Others have noticed that the existing six characters
consist of 48 bits, already sufficient to represent all dates over the projected lifetime of the universe:
248 = 2.8 × 1014 days = 7.7 × 1011 years!

Mathematicians think in terms of unbounded ranges, but the representation we choose for the
computer usually imposes hard limits. A good programming language like OCaml lets one easily
change the representation used in the program. But if files in the old representation exist all over
the place, there will still be conversion problems. The need for compatibility with older systems
causes problems across the computer industry.

1.1.2 Example II: Floating Point Numbers

Computers have integers like 1066 and floats like 1.066 × 103. A floating-point number is repre-
sented by two integers. The concept of data type involves:

• how a value is represented inside the computer
• the suite of operations given to programmers
• valid and invalid (or exceptional) results, such as “infinity” Computer arithmetic can yield

incorrect answers!

In science, numbers written with finite precision and a decimal exponent are said to be in standard
form. The computational equivalent is the floating point number. These are familiar to anybody who
has used a scientific calculator. Internally, a float consists of two integers.

Because of its finite precision, floating-point computations are potentially inaccurate. To see an
example, use your nearest electronic calculator to compute (21/10000)10000. I get 1.99999959! With
certain computations, the errors spiral out of control. Many programming languages fail to check
whether even integer computations fall within the allowed range: you can add two positive inte-
gers and get a negative one!

Most computers give us a choice of precisions. In 32-bit precision, integers typically range from
231 − 1 (namely 2 147 483 647) to −231; floats are accurate to about six decimal places and can get
as large as 1035 or so. For floats, 64-bit precision is often preferred. Early languages like Fortran
required variables to be declared as INTEGER, REAL or COMPLEX and barred programmers from
mixing numbers in a computation. Nowadays, programs handle many different kinds of data,
including text and symbols. The concept of a data type can ensure that different types of data are
not combined in a senseless way.

Inside the computer, all data are stored as bits. In most programming languages, the compiler
uses types to generate correct machine code, and types are not stored during program execution.
In this course, we focus almost entirely on programming in a high-level language: OCaml.

1.2 Goals of Programming

• to describe a computation so that it can be done mechanically:
– Expressions compute values.
– Commands cause effects.

• to do so efficiently and correctly, giving the right answers quickly

6

• to allow easy modification as needs change
– Through an orderly structure based on abstraction principles
– Such as modules or classes

Programming in-the-small concerns the writing of code to do simple, clearly defined tasks. Pro-
grams provide expressions for describing mathematical formulae and so forth. This was the
original contribution of FORTRAN, the FORmula TRANslator. Commands describe how control
should flow from one part of the program to the next.

As we code layer upon layer, we eventually find ourselves programming in the large : joining large
modules to solve some messy task. Programming languages have used various mechanisms to
allow one part of the program to provide interfaces to other parts. Modules encapsulate a body of
code, allowing outside access only through a programmer-defined interface. Abstract Data Types
are a simpler version of this concept, which implement a single concept such as dates or floating-
point numbers.

Object-oriented programming is the most complicated approach to modularity. Classes define con-
cepts, and they can be built upon other classes. Operations can be defined that work in appropri-
ately specialised ways on a family of related classes. Objects are instances of classes and hold the
data that is being manipulated.

This course does not cover OCaml’s sophisticated module system, which can do many of the same
things as classes. You will learn all about objects when you study Java. OCaml includes a powerful
object system, although this is not used as much as its module system.

1.3 Why Program in OCaml?

Why program in OCaml at all?

• It is interactive.
• It has a flexible notion of data type.
• It hides the underlying hardware: no crashes.
• Programs can easily be understood mathematically.
• It distinguishes naming something from updating memory.
• It manages storage for us.

Programming languages matter. They affect the reliability, security, and efficiency of the code
you write, as well as how easy it is to read, refactor, and extend. The languages you know can
also change how you think, influencing the way you design software even when you’re not using
them.

What makes OCaml special is that it occupies a sweet spot in the space of programming language
designs. It provides a combination of efficiency, expressiveness and practicality that is difficult to
find matched by any other language. “ML” was originally the meta language of the LCF (Logic
for Computable Functions) proof assistant released by Robin Milner in 1972 (at Stanford, and later
at Cambridge). ML was turned into a compiler in order to make it easier to use LCF on different
machines, and it was gradually turned into a full-fledged system of its own by the 1980s.

The modern OCaml emerged in 1996, and the past few decades have seen OCaml attract a sig-
nificant user base, and language improvements have been steadily added to support the growing
commercial and academic codebases. OCaml is therefore the outcome of years of research into

7

programming languages, and a good base to begin our journey into learning the foundations of
computer science.

Because of its connection to mathematics, OCaml programs can be designed and understood with-
out thinking in detail about how the computer will run them. Although a program can abort, it
cannot crash: it remains under the control of the OCaml system. It still achieves respectable effi-
ciency and provides lower-level primitives for those who need them. Most other languages allow
direct access to the underlying machine and even try to execute illegal operations, causing crashes.

The only way to learn programming is by writing and running programs. This web notebook
provides an interactive environment where you can modify the example fragments and see the
results for yourself. You should also consider installing OCaml on your own computer so that
you try more advanced programs locally.

1.4 A first session with OCaml

In [1]: let pi = 3.14159265358979

Out[1]: val pi : float = 3.14159265358979

The first line of this simple session is a value declaration. It makes the name pi stand for the floating
point number 3.14159. (Such names are called identifiers.) OCaml echoes the name (pi) and type
(float) of the declared identifier.

In [2]: pi *. 1.5 *. 1.5

Out[2]: - : float = 7.06858347057702829

The second line computes the area of the circle with radius 1.5 using the formula A = πr2. We
use pi as an abbreviation for 3.14159. Multiplication is expressed using *., which is called an
infix operator because it is written between its two operands.

OCaml replies with the computed value (about 7.07) and its type (again float).

In [3]: let area r = pi *. r *. r

Out[3]: val area : float -> float = <fun>

To work abstractly, we should provide the service “compute the area of a circle,” so that we no
longer need to remember the formula. This sort of encapsulated computation is called a function.
The third line declares the function area. Given any floating point number r, it returns another
floating point number computed using the area formula; note that the function has type float
-> float.

In [4]: area 2.0

Out[4]: - : float = 12.56637061435916

The fourth line calls the function area supplying 2.0 as the argument. A circle of radius 2 has an
area of about 12.6. Note that brackets around a function argument are not necessary.

8

The function uses pi to stand for 3.14159. Unlike what you may have seen in other programming
languages, pi cannot be “assigned to” or otherwise updated. Its meaning within area will persist
even if we issue a new let declaration for pi afterwards.

1.5 Raising a Number to a Power

In [5]: let rec npower x n =
if n = 0 then 1.0
else x *. npower x (n - 1)

Out[5]: val npower : float -> int -> float = <fun>

Mathematical Justification (for x 6= 0):
x0 = 1

xn+1 = x × xn.

The function npower raises its float argument x to the power n, a non-negative integer. The func-
tion is recursive: it calls itself. You can spot a recursive function due to the rec keyword in the
definition: this indicates that any invocation of the function name within the function body should
call itself. This concept should be familiar from mathematics, since exponentiation is defined by
the rules shown above. You may also have seen recursion in the product rule for differentiation:
(u · v)′ = u · v′ + u′ · v. In finding the derivative of u · v, we recursively find the derivatives of u
and v, combining them to obtain the desired result. The recursion is meaningful because it termi-
nates: we reduce the problem to two smaller problems, and this cannot go on forever. The OCaml
programmer uses recursion heavily. For n ≥ 0, the equation xn+1 = x × xn yields an obvious
computation:

x3 = x × x2 = x × x × x1 = x × x × x × x0 = x × x × x

The equation clearly holds even for negative n. However, the corresponding computation runs
forever:

x−1 = x × x−2 = x × x × x−3 = · · ·

Note that the function npower contains both an integer constant (0) and a floating point constant
(1.0). The decimal point makes all the difference. OCaml will notice and ascribe different meaning
to each type of constant.

In [6]: let square x = x *. x

Out[6]: val square : float -> float = <fun>

Now for a tiresome but necessary aside. In most languages, the types of arguments and results
must always be specified. OCaml is unusual that it normally infers the types itself. However,
sometimes it is useful to supply a hint to help you debug and develop your program. OCaml will
still infer the types even if you don’t specify them, but in some cases it will use a more inefficient

9

function than a specialised one. Some languages have just one type of number, converting auto-
matically between different formats; this is slow and could lead to unexpected rounding errors.
Type constraints are allowed almost anywhere. We can put one on any occurrence of x in the
function.

In [7]: let square (x : float) = x *. x

Out[7]: val square : float -> float = <fun>

Or we can constrain the type of the function’s result:

In [8]: let square x : float = x *. x

Out[8]: val square : float -> float = <fun>

OCaml treats the equality and comparison test specially. Expressions like if x = y then . . . are
allowed provided x and y have the same type and equality testing is possible for that type. (We
discuss equality further in a later lecture.) Note that x <> y is OCaml for x 6= y.

A characteristic feature of the computer is its ability to test for conditions and act accordingly. In
the early days, a program might jump to a given address depending on the sign of some number.
Later, John McCarthy defined the conditional expression to satisfy: if true then x else y = x if false
then x else y = y OCaml evaluates the expression if B then E1 else E2 by first evaluating B. If
the result is true then OCaml evaluates E1 and otherwise E2. Only one of the two expressions E1
and E2 is evaluated! If both were evaluated, then recursive functions like npower above would run
forever.

The if-expression is governed by an expression of type bool, whose two values are true and
false. In modern programming languages, tests are not built into “conditional branch” constructs
but have an independent status. Tests, or Boolean expressions, can be expressed using relational
operators such as < and =. They can be combined using the Boolean operators for negation (not),
conjunction (written as &&) and disjunction (written as ||). New properties can be declared as
functions: here, to test whether an integer is even, for example:

In [9]: let even n = n mod 2 = 0

Out[9]: val even : int -> bool = <fun>

1.6 Efficiently Raising a Number to a Power

In [10]: let rec power x n =
if n = 1 then x
else if even n then

power (x *. x) (n / 2)
else

x *. power (x *. x) (n / 2)

Out[10]: val power : float -> int -> float = <fun>

10

Mathematical Justification
x1 = x

x2n = (x2)n

x2n+1 = x × (x2)n.

For large n, computing powers using xn+1 = x × xn is too slow to be practical. The equations
above are much faster. Example:

212 = 46 = 163 = 16 × 2561 = 16 × 256 = 4096.

Instead of n multiplications, we need at most 2 lg n multiplications, where lg n is the logarithm of
n to the base 2.

We use the function even, declared previously, to test whether the exponent is even. Integer divi-
sion (/) truncates its result to an integer: dividing 2n + 1 by 2 yields n.

A recurrence is a useful computation rule only if it is bound to terminate. If n > 0 then n is
smaller than both 2n and 2n + 1. After enough recursive calls, the exponent will be reduced to 1.
The equations also hold if n ≤ 0, but the corresponding computation runs forever.

Our reasoning assumes arithmetic to be exact. Fortunately, the calculation is well-behaved using
floating-point.

Computer numbers have a finite range, which if exceeded results in the integer wrapping around.
You will understand this behaviour more as you learn about computer architecture and how mod-
ern systems represent numbers in memory.

If integers and floats must be combined in a calculation, OCaml provides functions to convert
between them:

In [11]: int_of_float 3.14159

Out[11]: - : int = 3

In [12]: float_of_int 3

Out[12]: - : float = 3.

OCaml’s libraries are organised using “modules”, so we may use compound identifiers such as
Float.of_int to refer to library functions. There are many thousands of library functions avail-
able in the OCaml ecosystem, including text-processing and operating systems functions in addi-
tion to the usual numerical ones.

1.6.1 Exercise 1.1

One solution to the year 2000 bug involves storing years as two digits, but interpreting them such
that 50 means 1950 and 49 means 2049. Comment on the merits and demerits of this approach.

11

1.6.2 Exercise 1.2

Using the date representation of the previous exercise, code OCaml functions to (a) compare two
years (b) add/subtract some given number of years from another year.

1.6.3 Exercise 1.3

Why would no experienced programmer write an expression of the form if . . . then true else
false? What about expressions of the form if . . . then false else true?

1.6.4 Exercise 1.4

Functions npower and power both return a float. The definition of npower returns the float value
1.0 in its base case. The definition of power does not, so how does the OCaml type checker know
that power returns a float?

1.6.5 Exercise 1.5

Because computer arithmetic is based on binary numbers, simple decimals such as 0.1 often cannot
be represented exactly. Write a function mul that performs the computation m

x + x + · · ·+ x︸ ︷︷ ︸
n

where x has type float. (It is essential to use repeated addition rather than multiplication!)

The value computed with n = 10000 and x = 0.1 may print as 1000.0, which looks exact. If that
happens, then evaluate the expression mul 0.1 10000 it - 1000.0

An error of this type has been blamed for the failure of an American Patriot Missile battery to
intercept an incoming Iraqi missile during the first Gulf War. The missile hit an American Army
barracks, killing 28.

1.6.6 Exercise 1.6

Another example of the inaccuracy of floating-point arithmetic takes the golden ratio ϕ ≈ 1.618 . . .
as its starting point:

γ0 =
1 +

√
5

2
and γn+1 =

1
γn − 1

.

In theory, it is easy to prove that γn = · · · = γ1 = γ0 for all n > 0. Code this computation in
OCaml and report the value of γ50. Hint: in OCaml,

√
5 is expressed as sqrt 5.0.

12

https://en.wikipedia.org/wiki/MIM-104_Patriot#Failure_at_Dhahran

Chapter 2

Lecture 2: Recursion and Efficiency

2.1 Expression Evaluation

Expression evaluation concerns expressions and the values they return. This view of computation
may seem to be too narrow. It is certainly far removed from computer hardware, but that can be
seen as an advantage. For the traditional concept of computing solutions to problems, expression
evaluation is entirely adequate.

Starting with E0, the expression Ei is reduced to Ei+1 until this process concludes with a value v.
A value is something like a number that cannot be further reduced.

We write E → E′ to say that E is reduced to E′. Mathematically, they are equal: E = E′, but the
computation goes from E to E′ and never the other way around.

Computers also interact with the outside world. For a start, they need some means of accept-
ing problems and delivering solutions. Many computer systems monitor and control industrial
processes. This role of computers is familiar now, but was never envisaged in the early days. Com-
puter pioneers focused on mathematical calculations. Modelling interaction and control requires
a notion of states that can be observed and changed. Then we can consider updating the state by
assigning to variables or performing input/output, finally arriving at conventional programs as
coded in C, for instance.

For now, we remain at the level of expressions, which is usually termed functional programming.

2.2 Summing the first n integers

In [13]: let rec nsum n =
if n = 0 then

0
else

n + nsum (n - 1)

Out[13]: val nsum : int -> int = <fun>

13

The function call nsum n computes the sum 1 + . . . + nz rather naively, hence the initial n in its
name:

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1)
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))

The nesting of parentheses is not just an artifact of our notation; it indicates a real problem. The
function gathers up a collection of numbers, but none of the additions can be performed until
nsum 0 is reached. Meanwhile, the computer must store the numbers in an internal data structure,
typically the stack. For large n, say nsum 10000, the computation might fail due to stack overflow.

We all know that the additions can be performed as we go along. How do we make the computer
do that?

2.3 Iteratively summing the first n integers

In [14]: let rec summing n total =
if n = 0 then

total
else

summing (n - 1) (n + total)

Out[14]: val summing : int -> int -> int = <fun>

Function summing takes an additional argument: a running total. If n is zero then it returns the
running total; otherwise, summing adds to it and continues. The recursive calls do not nest; the
additions are done immediately.

A recursive function whose computation does not nest is called iterative or tail-recursive. Many
functions can be made iterative by introducing an argument analogous to total, which is often
called an accumulator.

The gain in efficiency is sometimes worthwhile and sometimes not. The function power is not
iterative because nesting occurs whenever the exponent is odd. Adding a third argument makes
it iterative, but the change complicates the function and the gain in efficiency is minute; for 32-bit
integers, the maximum possible nesting is 30 for the exponent 231 − 1.

2.4 Recursion vs Iteration

• “Iterative” normally refers to a loop, coded using while for example (see the final lecture)
• Tail-recursion is only efficient if the compiler detects it
• Mainly it saves space (memory), though iterative code can also run after
• Do not make programs iterative unless the gain is worth it

14

A classic book by Abelson and Sussman, which describes the Lisp dialect known as Scheme, used
iterative to mean tail-recursive. Iterative functions produce computations resembling those that can
be done using while-loops in conventional languages.

Many algorithms can be expressed naturally using recursion, but only awkwardly using iteration.
There is a story that Dijkstra sneaked recursion into Algol-60 by inserting the words “any other
occurrence of the procedure name denotes execution of the procedure.” By not using the word
“recursion”, he managed to slip this amendment past sceptical colleagues.

Obsession with tail recursion leads to a coding style in which functions have many more argu-
ments than necessary. Write straightforward code first, avoiding only gross inefficiency. If the
program turns out to be too slow, tools are available for pinpointing the cause. Always remember
KISS (Keep It Simple, Stupid).

I hope you have all noticed by now that the summation can be done even more efficiently using
the arithmetic progression formula:

1 + · · ·+ n = n(n + 1)/2

2.5 Silly Summing the First n Integers

In [15]: let rec sillySum n =
if n = 0 then

0
else

n + (sillySum (n - 1) + sillySum (n - 1)) / 2

Out[15]: val sillySum : int -> int = <fun>

The function calls itself 2n times! Bigger inputs mean higher costs—but what’s the growth rate?

Now let us consider how to estimate various costs associated with a program. Asymptotic complex-
ity refers to how costs—usually time or space—grow with increasing inputs. Space complexity can
never exceed time complexity, for it takes time to do anything with the space. Time complexity
often greatly exceeds space complexity.

The function sillySum calls itself twice in each recursive step. This function is contrived, but many
mathematical formulas refer to a particular quantity more than once. In OCaml, we can create a
local binding to a computed value using the local declaration syntax. In the following expression, y
is computed once and used twice:

In [16]: let x = 2.0 in
let y = Float.pow x 20.0 in
y *. (x /. y)

Out[16]: - : float = 2.

Fast hardware does not make good algorithms unnecessary. On the contrary, faster hardware
magnifies the superiority of better algorithms. Typically, we want to handle the largest inputs
possible. If we double our processing power, what do we gain? How much can we increase n,

15

https://en.wikipedia.org/wiki/Structure_and_Interpretation_of_Computer_Programs

the input to our function? With sillySum, we can only go from n to n + 1. We are limited to
this modest increase because the function’s running time is proportional to 2n. With the function
npower defined in the previous lecture, we can go from n to 2n: we can handle problems twice as
big. With power we can do much better still, going from n to n2.

complexity 1 second 1 minute 1 hour gain

n 1000 60 000 3 600 000 x60
n log n 140 4 895 204 095 x41

n2 31 244 1 897 x8
n3 10 39 153 x4
2n 9 15 21 +6

This table (excerpted from a 40-year-old book!) illustrates the effect of various time complexities.
The left-hand column indicates how many milliseconds are required to process an input of size
n. The other entries show the maximum size of n that can be processed in the given time (one
second, minute or hour).

The table illustrates how large an input can be processed as a function of time. As we increase
the computer time per input from one second to one minute and then to one hour, the size of the
input increases accordingly.

The top two rows (complexities n and n lg n) increase rapidly: for n, by a factor of 60. The bottom
two start out close together, but n3 (which grows by a factor of 3.9) pulls well away from 2n (whose
growth is only additive). If an algorithm’s complexity is exponential then it can never handle large
inputs, even if it is given huge resources. On the other hand, suppose the complexity has the form
nc, where c is a constant. (We say the complexity is polynomial.) Doubling the argument then
increases the cost by a constant factor. That is much better, though if c > 3 the algorithm may not
be considered practical.

2.6 Comparing Algorithms: O Notation

• Formally, define f (n) = O(g(n)) provided | f (n)| ≤ c|g(n)|
• | f (n)| is bounded for some constant c and all sufficiently large n.
• Intuitively, look at the most significant term.
• Ignore constant factors as they seldom dominate and are often transitory

For example: consider n2 instead of 3n2 + 34n + 433.

The cost of a program is usually a complicated formula. Often we should consider only the most
significant term. If the cost is n2 + 99n + 900 for an input of size n, then the n2 term will eventually
dominate, even though 99n is bigger for n < 99. The constant term 900 may look big, but it is soon
dominated by n2.

Constant factors in costs can be ignored unless they are large. For one thing, they seldom make a
difference: 100n2 will be better than n3 in the long run: or asymptotically to use the jargon. More-
over, constant factors are seldom stable. They depend upon details such as which hardware,
operating system or programming language is being used. By ignoring constant factors, we can
make comparisons between algorithms that remain valid in a broad range of circumstances.

16

https://archive.org/details/designanalysisof00ahoarich

The “Big O” notation is commonly used to describe efficiency—to be precise, asymptotic complexity.
It concerns the limit of a function as its argument tends to infinity. It is an abstraction that meets
the informal criteria that we have just discussed. In the definition, sufficiently large means there is
some constant n0 such that | f (n)| ≤ c|g(n)| for all n greater than n0. The role of n0 is to ignore
finitely many exceptions to the bound, such as the cases when 99n exceeds n2.

2.7 Simple Facts About O Notation

O(2g(n)) is the same as O(g(n))
O(log10 n) is the same as O(ln n)

O(n2 + 50n + 36) is the same as O(n2)

O(n2) is contained in O(n3)

O(2n) is contained in O(3n)

O(log n) is contained in O(
√

n)

O notation lets us reason about the costs of algorithms easily.

• Constant factors such as the 2 in O(2g(n)) drop out: we can use O(g(n)) with twice the
value of c in the definition.

• Because constant factors drop out, the base of logarithms is irrelevant.
• Insignificant terms drop out. To see that O(n2 + 50n+ 36) is the same as O(n2), consider that

n2 + 50n + 36/n2 converges to 1 for increasing n. In fact, n2 + 50n + 36 ≤ 2n2 for n ≥ 51, so
can double the constant factor

If c and d are constants (that is, they are independent of n) with 0 < c < d then - O(nc) is contained
in O(nd) - O(cn) is contained in O(dn) - O(log n) is contained inO(nc)

To say that O(cn) is contained in O(dn) means that the former gives a tighter bound than the latter.
For example, if f (n) = O(2n) then f (n) = O(3n) trivially, but the converse does not hold.

2.8 Common Complexity Classes

• O(1) is constant
• O(log n) is logarithmic
• O(n) is linear
• O(n log n) is quasi-linear
• O(n2) is quadratic
• O(n3) is cubic
• O(an) is exponential (for fixed a)

Logarithms grow very slowly, so O(log n) complexity is excellent. Because O notation ignores
constant factors, the base of the logarithm is irrelevant!

Under linear we might mention O(n log n), which occasionally is called quasilinear and which
scales up well for large n.

An example of quadratic complexity is matrix addition: forming the sum of two n × n matrices
obviously takes n2 additions. Matrix multiplication is of cubic complexity, which limits the size

17

of matrices that we can multiply in reasonable time. An O(n2.81) algorithm exists, but it is too
complicated to be of much use, even though it is theoretically better.

An exponential growth rate such as 2n restricts us to small values of n. Already with n = 20 the
cost exceeds one million. However, the worst case might not arise in normal practice. OCaml
type-checking is exponential in the worst case, but not for ordinary programs.

2.9 Sample costs in O notation

Recall that npower computes xn by repeated multiplication while nsum naively computes the sum
1 + · · ·+ n. Each obviously performs O(n) arithmetic operations. Because they are not tail recur-
sive, their use of space is also O(n). The function summing is a version of nsum with an accumu-
lating argument; its iterative behaviour lets it work in constant space. O notation spares us from
having to specify the units used to measure space.

Function Time Space

npower, nsum O(n) O(n)
summing O(n) O(1)
n(n + 1)/2 O(1) O(1)
power O(log n) O(log n)
sillySum O(2n) O(n)

Even ignoring constant factors, the units chosen can influence the result. Multiplication may be
regarded as a single unit of cost. However, the cost of multiplying two n-digit numbers for large
n is itself an important question, especially now that public-key cryptography uses numbers hun-
dreds of digits long.

Few things can really be done in constant time or stored in constant space. Merely to store the
number n requires O(log n) bits. If a program cost is O(1), then we have probably assumed that
certain operations it performs are also O(1)—typically because we expect never to exceed the
capacity of the standard hardware arithmetic.

With power, the precise number of operations depends upon n in a complicated way, depending on
how many odd numbers arise, so it is convenient that we can just write O(log n). An accumulating
argument could reduce its space cost to O(1).

2.10 Some Simple Recurrence Relations

Consider T(n) has a cost we want to bound using O notation. A typical base case is T(1) = 1. Some
recurrences are:

Equation Complexity

T(n + 1) = T(n) + 1 O(n)
T(n + 1) = T(n) + n O(n2)
T(n) = T(n/2) + 1 O(log n)
T(n) = 2T(n/2) + n O(n log n)

18

To analyse a function, inspect its OCaml declaration. Recurrence equations for the cost function
T(n) can usually be read off. Since we ignore constant factors, we can give the base case a cost
of one unit. Constant work done in the recursive step can also be given unit cost; since we only
need an upper bound, this unit represents the larger of the two actual costs. We could use other
constants if it simplifies the algebra.

For example, recall our function nsum:

In [17]: let rec nsum n =
if n = 0 then

0
else

n + nsum (n - 1)

Out[17]: val nsum : int -> int = <fun>

Given n + 1, it performs a constant amount of work (an addition and subtraction) and calls itself
recursively with argument n. We get the recurrence equations T(0) = 1 and T(n + 1) = T(n) + 1.
The closed form is clearly T(n) = n + 1, as we can easily verify by substitution. The cost is linear.

This function, given n + 1, calls nsum, performing O(n) work. Again ignoring constant factors, we
can say that this call takes exactly n units.

In [18]: let rec nsumsum n =
if n = 0 then

0
else

nsum n + nsumsum (n - 1)

Out[18]: val nsumsum : int -> int = <fun>

We get the recurrence equations T(0) = 1 and T(n + 1) = T(n) + n. It is easy to see that T(n) =
(n − 1) + · · ·+ 1 = n(n − 1)/2 = O(n2). The cost is quadratic.

The function power divides its input n into two, with the recurrence equation T(n) = T(n/2) + 1.
Clearly T(2n) = n + 1, so T(n) = O(log n).

2.10.1 Exercise 2.1

Code an iterative version of the function power.

2.10.2 Exercise 2.2

Add a column to the table of complexities from The Design and Analysis of Computer Algorithms
with the heading 60 hours:

complexity 1 second 1 minute 1 hour 60 hours

n 1000 60 000 3 600 000
n log n 140 4 895 204 095

n2 31 244 1 897

19

complexity 1 second 1 minute 1 hour 60 hours

n3 10 39 153
2n 9 15 21

2.10.3 Exercise 2.3

Let g1, . . . , gk be functions such that gi(n) ≥ 0 for i = 1, . . . , k and all sufficiently large n.

Show that if f (n) = O(a1g1(n) + · · ·+ akgk(n)) then f (n) = O(g1(n) + · · ·+ gk(n)).

2.10.4 Exercise 2.4

Find an upper bound for the recurrence given by T(1) = 1 and T(n) = 2T(n/2) + 1. You should
be able to find a tighter bound than O(n log n).

20

Chapter 3

Lecture 3: Lists

In [19]: let x = [3; 5; 9]

Out[19]: val x : int list = [3; 5; 9]

In [20]: let y = [(1, "one"); (2, "two")]

Out[20]: val y : (int * string) list = [(1, "one"); (2, "two")]

A list is an ordered series of elements; repetitions are significant. So [3; 5; 9] differs from [5;
3; 9] and from [3; 3; 5; 9]. Elements in the list are separated with ; when constructed, as
opposed to the , syntax used for fixed-length tuples.

All elements of a list must have the same type. Above we see a list of integers and a list of
(integer, string) pairs. One can also have lists of lists, such as [[3]; []; [5; 6]], which
has type int list list.

In the general case, if x1; . . . ; xn all have the same type (say τ) then the list [x1; . . . ; xn] has type
(τ)list.

Lists are the simplest data structure that can be used to process collections of items. Conventional
languages use arrays whose elements are accessed using subscripting: for example, A[i] yields the
ith element of the array A. Subscripting errors are a known cause of programmer grief, however,
so arrays should be replaced by higher-level data structures whenever possible.

In [21]: x @ [2; 10]

Out[21]: - : int list = [3; 5; 9; 2; 10]

In [22]: List.rev [(1, "one"); (2, "two")]

Out[22]: - : (int * string) list = [(2, "two"); (1, "one")]

The infix operator @ (also called List.append) concatenates two lists. Also built-in is List.rev,
which reverses a list. These are demonstrated in the session above.

21

3.1 The List Primitives

There are two kinds of lists:

• [] represents the empty list
• x :: l is the list with head x and tail l

In [23]: let nil = []

Out[23]: val nil : 'a list = []

In [24]: 1 :: nil

Out[24]: - : int list = [1]

In [25]: 1 :: 2 :: nil

Out[25]: - : int list = [1; 2]

The operator :: (also called List.cons for “construct”), puts a new element on to the head of an
existing list. While we should not be too preoccupied with implementation details, it is essential
to know that :: is an O(1) operation. It uses constant time and space, regardless of the length of
the resulting list. Lists are represented internally with a linked structure; adding a new element to
a list merely hooks the new element to the front of the existing structure. Moreover, that structure
continues to denote the same list as it did before; to see the new list, one must look at the new ::
node (or “cons cell”) just created.

Here we see the element 1 being consed to the front of the list [3; 5; 9]:

::→· · · ::→ ::→ ::→ []
↓ ↓ ↓ ↓
1 3 5 9

Given a list, taking its first element (its “head”) or its list of remaining elements (its “tail”) also
takes constant time. Each operation just follows a link. In the diagram above, the first down
arrow leads to the head and the leftmost right arrow leads to the tail. Once we have the tail, its
head is the second element of the original list, etc.

The tail is not the last element; it is the list of all elements other than the head!

3.2 Getting at the Head and Tail

In [26]: let null = function
| [] -> true
| x :: l -> false

Out[26]: val null : 'a list -> bool = <fun>

In [27]: null []

22

Out[27]: - : bool = true

In [28]: null [1; 2; 3]

Out[28]: - : bool = false

In [29]: let hd (x::l) = x

File "[29]", line 1, characters 7-17:
1 | let hd (x::l) = x

ˆˆˆˆˆˆˆˆˆˆ
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]

Out[29]: val hd : 'a list -> 'a = <fun>

In [30]: hd [1; 2; 3]

Out[30]: - : int = 1

In [31]: let tl (x::l) = l

File "[31]", line 1, characters 7-17:
1 | let tl (x::l) = l

ˆˆˆˆˆˆˆˆˆˆ
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]

Out[31]: val tl : 'a list -> 'a list = <fun>

In [32]: tl [7; 6; 5]

Out[32]: - : int list = [6; 5]

The empty list has neither head nor tail. Applying List.hd or List.tl to [] is an error—strictly
speaking, an “exception”. The function null can be used to check for the empty list beforehand.
Taking a list apart using combinations of hd and tl is hard to get right. Fortunately, it is seldom
necessary because of pattern-matching.

The declaration of null above has two clauses: one for the empty list (for which it returns true)
and one for non-empty lists (for which it returns false).

The declaration of hd above has only one clause, for non-empty lists. They have the form x::l
and the function returns x, which is the head. OCaml prints a warning to tell us that calling the

23

function could raise an exception because not all possible inputs are handled, including a counter-
example (in this case, the empty list []). The declaration of tl is similar to hd.

These three primitive functions are polymorphic and allow flexibility in the types of their arguments
and results. Note their types!

In [33]: null

Out[33]: - : 'a list -> bool = <fun>

In [34]: hd

Out[34]: - : 'a list -> 'a = <fun>

In [35]: tl

Out[35]: - : 'a list -> 'a list = <fun>

Symbols 'a and 'b are called type variables and stand for any types. Code written using these
functions is checked for type correctness at compile time. And this guarantees strong properties
at run time, for example that the elements of any list all have the same type.

3.3 Computing the Length of a List

In [36]: let rec nlength = function
| [] -> 0
| x :: xs -> 1 + nlength xs

Out[36]: val nlength : 'a list -> int = <fun>

In [37]: nlength []

Out[37]: - : int = 0

In [38]: nlength [5; 6; 7]

Out[38]: - : int = 3

nlength [a; b; c] ⇒ 1 + nlength [b; c]
⇒ 1 + (1 + nlength [c])
⇒ 1 + (1 + (1 + nlength []))

⇒ 1 + (1 + (1 + 0))
⇒ . . . 3

Most list processing involves recursion. This is a simple example; patterns can be more complex.
Observe the use of a vertical bar | to separate the function’s clauses. We have one function decla-
ration that handles two cases. To understand its role, consider the following faulty code:

24

In [39]: let rec nlength [] = 0

File "[39]", line 1, characters 16-22:
1 | let rec nlength [] = 0

ˆˆˆˆˆˆ
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
::

Out[39]: val nlength : 'a list -> int = <fun>

In [40]: let rec nlength (x::xs) = 1 + nlength xs

File "[40]", line 1, characters 16-40:
1 | let rec nlength (x::xs) = 1 + nlength xs

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]

Out[40]: val nlength : 'a list -> int = <fun>

These are two declarations, not one. First we declare nlength to be a function that handles only
empty lists. Then we redeclare it to be a function that handles only non-empty lists; it can never
deliver a result. We see that a second let declaration replaces any previous one rather than ex-
tending it to cover new cases.

Now, let us return to the declaration shown on the slide. The length function is polymorphic and
applies to all lists regardless of element type! Most programming languages lack such flexibility.

Unfortunately, this length computation is naive and wasteful. Like nsum earlier, it is not tail-
recursive. It uses O(n) space, where n is the length of its input. As usual, the solution is to add an
accumulating argument.

3.4 Efficiently Computing the Length of a List

In [41]: let rec addlen n = function
| [] -> n
| x::xs -> addlen (n + 1) xs

Out[41]: val addlen : int -> 'a list -> int = <fun>

In [42]: addlen 0 [5; 6; 7]

Out[42]: - : int = 3

25

addlen 0[a; b; c] ⇒ addlen 1 [b; c]
⇒ addlen 2 [c]
⇒ addlen 3 []

⇒ 3

Function addlen is again polymorphic. Its type mentions the integer accumulator.

Now we may declare an efficient length function. It is simply a wrapper for addlen, supplying
zero as the initial value of n.

In [43]: let length xs = addlen 0 xs

Out[43]: val length : 'a list -> int = <fun>

In [44]: length [5; 6; 7; 8]

Out[44]: - : int = 4

The recursive calls do not nest: this version is iterative. It takes O(1) space. Obviously its time
requirement is O(n) because it takes at least n steps to find the length of an n-element list.

3.5 Append: List Concatenation

In [45]: let rec append xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> x :: append xs ys

Out[45]: val append : 'a list -> 'a list -> 'a list = <fun>

In [46]: append [1; 2; 3] [4]

Out[46]: - : int list = [1; 2; 3; 4]

Patterns can be as complicated as we like. Here, the two patterns are [], ys and x::xs, ys.

append [1; 2; 3][4] ⇒ 1 :: append [2; 3] [4]
⇒ 1 :: (2 :: append [3] [4])
⇒ 1 :: (2 :: (3 :: append [] [4]))
⇒ 1 :: (2 :: (3 :: [4])) ; [1; 2; 3; 4]

Here is how append might be declared, ignoring the details of how @ is made an infix operator.
This function is also not iterative. It scans its first argument, sets up a string of cons operations
(::) and finally does them.

It uses O(n) space and time, where n is the length of its first argument. Its costs are independent of
its second argument.

26

An accumulating argument could make it iterative, but with considerable complication. The it-
erative version would still require O(n) space and time because concatenation requires copying
all the elements of the first list. Therefore, we cannot hope for asymptotic gains; at best we can
decrease the constant factor involved in O(n), but complicating the code is likely to increase that
factor. Never add an accumulator merely out of habit.

Note append’s polymorphic type. It tells us that two lists can be joined if their element types
agree.

3.6 Reversing a List in O(n2)

Let us consider one way to reverse a list.

In [47]: let rec nrev = function
| [] -> []
| x::xs -> (nrev xs) @ [x]

Out[47]: val nrev : 'a list -> 'a list = <fun>

In [48]: nrev [1; 2; 3]

Out[48]: - : int list = [3; 2; 1]

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
⇒ (nrev [c] @ [b]) @ [a]
⇒ ((nrev [] @ [c]) @ [b]) @ [a]
⇒ (([] @ [c]) @ [b]) @ [a] ; . . . ; [c; b; a]

This reverse function is grossly inefficient due to poor usage of append, which copies its first
argument. If nrev is given a list of length n > 0, then append makes n − 1 conses to copy the
reversed tail. Constructing the list [x] calls cons again, for a total of n calls. Reversing the tail
requires n − 1 more conses, and so forth. The total number of conses is:

0 + 1 + 2 + · · ·+ n = n(n + 1)/2

The time complexity is therefore O(n2). Space complexity is only O(n) because the copies don’t
all exist at the same time.

3.7 Reversing a List in O(n)

In [49]: let rec rev_app xs ys =
match xs, ys with
| [], ys -> ys
| x::xs, ys -> rev_app xs (x::ys)

Out[49]: val rev_app : 'a list -> 'a list -> 'a list = <fun>

27

rev_app [a; b; c] [] ⇒ rev_app [b; c] [a]
⇒ rev_app [c] [b; a]
⇒ rev_app [] [c; b; a]
⇒ [c; b; a]

Calling rev_app xs ys reverses the elements of xs and prepends them to ys. Now we may declare

In [50]: let rev xs = rev_app xs []

Out[50]: val rev : 'a list -> 'a list = <fun>

In [51]: rev [1; 2; 3]

Out[51]: - : int list = [3; 2; 1]

It is easy to see that this reverse function performs just n conses, given an n-element list. For both
reverse functions, we could count the number of conses precisely—not just up to a constant factor.
O notation is still useful to describe the overall running time: the time taken by a cons varies from
one system to another.

The accumulator y makes the function iterative. But the gain in complexity arises from the removal
of append. Replacing an expensive operation (append) by a series of cheap operations (cons) is
called reduction in strength and is a common technique in computer science. It originated when
many computers did not have a hardware multiply instruction; the series of products i × r for
i = 0, . . . , n could more efficiently be computed by repeated addition. Reduction in strength can
be done in various ways; we shall see many instances of removing append.

Consing to an accumulator produces the result in reverse. If that forces the use of an extra list
reversal then the iterative function may be much slower than the recursive one.

3.8 Lists, Strings and Characters

Strings are provided in most programming languages to allow text processing. Strings are essen-
tial for communication with users. Even a purely numerical program formats its results ultimately
as strings.

In [52]: 'a' (* a character constant *)

Out[52]: - : char = 'a'

In [53]: "a" (* a string constant of length 1 *)

Out[53]: - : string = "a"

In [54]: "abc" (* a string constant of length 3 *)

Out[54]: - : string = "abc"

28

In [55]: String.length "abc"

Out[55]: - : int = 3

In [56]: "abc" ^ "def" (* concatenate two strings *)

Out[56]: - : string = "abcdef"

In a few programming languages, strings simply are lists of characters. In OCaml they are a sepa-
rate type, unrelated to lists, reflecting the fact that strings are an abstract concept in themselves.

Similarly, characters are not strings of size one, but are a primitive concept. Character constants in
OCaml have the form 'c', where c is any character. For example, the comma character is ','.

Special characters are coded in strings using escape sequences involving the backslash character;
among many others, a double quote is written "\\" and the newline character is written "\n". For
example, the string "I\nLIKE\nCHEESE\n" represents three text lines.

In addition to the operators described above, the relations <, <=, >, and >= work for strings and
yield alphabetic order (more precisely, lexicographic order with respect to ASCII character codes).

3.8.1 Exercise 3.1

Code a recursive function to compute the sum of a list’s elements. Then code an iterative version
and comment on the improvement in efficiency.

3.8.2 Exercise 3.2

Code a function to return the last element of a non-empty list. How efficiently can this be done?

3.8.3 Exercise 3.3

Code a function to return the list consisting of the even-numbered elements of the list given as its
argument. For example, given [a; b; c; d] it should return [b; d].

3.8.4 Exercise 3.4

Consider the polymorphic types in these two function declarations:

In [57]: let id x = x

Out[57]: val id : 'a -> 'a = <fun>

In [58]: let rec loop x = loop x

Out[58]: val loop : 'a -> 'b = <fun>

Explain why these types make logical sense, preventing run time type errors, even for expressions
like id [id [id 0]] or loop true / loop 3.

29

3.8.5 Exercise 3.5

Code a function tails to return the list of the tails of its argument. For example, given [1; 2; 3]
it should return [[1; 2; 3]; [2; 3]; [3]; []].

30

Chapter 4

Lecture 4: More on Lists

4.1 List Utilities: take and drop

Removing the first i elements of a list can be done as follows:

In [59]: let rec take i = function
| [] -> []
| x::xs ->

if i > 0 then x :: take (i - 1) xs
else []

Out[59]: val take : int -> 'a list -> 'a list = <fun>

In [60]: let rec drop i = function
| [] -> []
| x::xs ->

if i > 0 then drop (i-1) xs
else x::xs

Out[60]: val drop : int -> 'a list -> 'a list = <fun>

This lecture examines more list utilities, illustrating more patterns of recursion, and concludes
with a small program for making change.

The functions take and drop divide a list into parts, returning or discarding the first i elements.

xs = [x0, . . . , xi−1︸ ︷︷ ︸
take i xs

, xi, . . . , xn−1︸ ︷︷ ︸
drop i xs

]

Applications of take and drop will appear in future lectures. Typically, they divide a collection of
items into equal parts for recursive processing.

Function take is not iterative, but making it so would not improve its efficiency. The task requires
copying up to i list elements, which must take O(i) space and time.

31

Function drop simply skips over i list elements. This requires O(i) time but only constant space.
It is iterative and much faster than take. Both functions use O(i) time, but skipping elements is
faster than copying them: drop’s constant factor is smaller.

Both functions take an integer and a list, returning a list of the same type. So their type is int ->
'a list -> 'a list.

4.2 Linear Search

• find x in list [x1, . . . , xn] by comparing with each element
• obviously O(n) time
• simple & general
• ordered searching needs only O(log n)
• indexed lookup needs only O(1)

Linear search is the obvious way to find a desired item in a collection: simply look through all the
items, one at a time. If x is in the list, then it will be found in n/2 steps on average, and even the
worst case is obviously O(n).

Large collections of data are usually ordered or indexed so that items can be found in O(log n)
time, which is exponentially better than O(n). Even O(1) is achievable (using a hash table), though
subject to the usual proviso that machine limits are not exceeded.

Efficient indexing methods are of prime importance: consider Web search engines. Nevertheless,
linear search is often used to search small collections because it is so simple and general, and it is
the starting point for better algorithms.

4.3 Equality Tests

In [61]: let rec member x = function
| [] -> false
| y::l ->

if x = y then true
else member x l

Out[61]: val member : 'a -> 'a list -> bool = <fun>

All the list functions we have encountered up to now have been “polymorphic”, working for lists
of any type. Function member uses linear search to report whether or not x occurs in l.

To do this generically, it uses a special feature of OCaml known as “polymorphic equality”, which
manifests itself via the =, >=, <=, > and < operators. These operators inspect the structure of the
values using a consistent order. Types you can legitimately compare this way include integers,
strings, booleans, and tuples or lists of primitive types.

More complex types can be compared this way within careful limits: recursive structures or func-
tion values will not work (we will cover function values in the Currying lecture later). For now,
it is sufficient to use these magic polymorphic equality operators. As you get more familiar with
OCaml and the use of higher order functions (also covered in a later lecture), you will encounter
the use of explicit compare functions that are used to provide more complex equality tests.

32

The presence of polymorphic equality is a contentious feature in OCaml. While it provides a great
ease of use in smaller codebases, it starts to become more dangerous when building larger OCaml-
based systems. Most large-scale users of OCaml tend towards not using it in important code, but
it is just fine for our purposes while learning the beginning steps of computer science.

4.4 Building a List of Pairs

In [62]: let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) -> (x, y) :: zip xs ys
| _ -> []

Out[62]: val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

[x1, . . . , xn]

[y1, . . . , yn]

}
7−→ [(x1, y1), . . . , (xn, yn)]

The wildcard pattern _ matches anything. We could have written a variable such as p instead, but
the wildcard reminds us that the relevant clause ignores this argument.

The patterns are also tested in order of their definitions: first (x::xs, y::ys), then _.

A list of pairs of the form [(x1, y1), . . . , (xn, yn)] associates each xi with yi. Conceptually, a tele-
phone directory could be regarded as such a list, where xi ranges over names and yi over the
corresponding telephone number. Linear search in such a list can find the yi associated with a
given xi, or vice versa—very slowly.

In other cases, the (xi, yi) pairs might have been generated by applying a function to the elements
of another list [z1, . . . , zn].

In [63]: let rec unzip = function
| [] -> ([], [])
| (x, y)::pairs ->

let xs, ys = unzip pairs in
(x::xs, y::ys)

Out[63]: val unzip : ('a * 'b) list -> 'a list * 'b list = <fun>

The functions zip and unzip build and take apart lists of pairs: zip pairs up corresponding list
elements and unzip inverts this operation. Their types reflect what they do:

In [64]: zip

Out[64]: - : 'a list -> 'b list -> ('a * 'b) list = <fun>

In [65]: unzip

Out[65]: - : ('a * 'b) list -> 'a list * 'b list = <fun>

33

If the lists are of unequal length, zip discards surplus items at the end of the longer list. Its first
pattern only matches a pair of non-empty lists. The second pattern is just a wildcard and could
match anything. OCaml tries the clauses in the order given, so the first pattern is tried first. The
second only gets arguments where at least one of the lists is empty.

4.5 Building a Pair of Results

In [66]: let rec revUnzip = function
| ([], xs, ys) -> (xs, ys)
| ((x, y)::pairs, xs, ys) ->

revUnzip (pairs, x::xs, y::ys)

Out[66]: val revUnzip : ('a * 'b) list * 'a list * 'b list -> 'a list * 'b list =
<fun>

Given a list of pairs, unzip has to build two lists of results, which is awkward using recursion. The
version shown above uses the local binding let p = E1 in E2, where the value of E1 is bound to the
pattern P within E2. The let-construct counts as an expression and can be used (perhaps wrapped
within parentheses) wherever an expression is expected.

Note especially the phrase let xs, ys = unzip pairs which binds xs and ys to the results of
the recursive call. In general, the phrase let P = E matches the pattern P against the value of
expression E. It binds all the variables in P to the corresponding values.

Here is a version of unzip that replaces the local declaration by a function conspair for taking
apart the pair of lists in the recursive call. It defines the same computation as the previous version
of unzip and is possibly clearer, but not every local binding can be eliminated as easily.

In [67]: let conspair ((x, y), (xs, ys)) = (x::xs, y::ys)

Out[67]: val conspair : ('a * 'b) * ('a list * 'b list) -> 'a list * 'b list = <fun>

In [68]: let rec unzip = function
| [] -> ([], [])
| xy :: pairs -> conspair (xy, unzip pairs)

Out[68]: val unzip : ('a * 'b) list -> 'a list * 'b list = <fun>

Making the function iterative yields revUnzip above, which is very simple. Iteration can construct
many results at once in different argument positions. Both output lists are built in reverse order,
which can be corrected by reversing the input to revUnzip. The total costs will probably exceed
those of unzip despite the advantages of iteration.

4.6 An Application: Making Change

In [69]: let rec change till amt =
match till, amt with
| _, 0 -> []

34

| [], _ -> raise (Failure "no more coins!")
| c::till, amt -> if amt < c then change till amt

else c :: change (c::till) (amt - c)

Out[69]: val change : int list -> int -> int list = <fun>

• The recursion terminates when amt = 0.
• Tries the largest coin first to use large coins.
• The algorithm is greedy and can fail!

The till has unlimited supplies of coins. The largest coins should be tried first, to avoid giving
change all in pennies. The list of legal coin values, called till, is given in descending order, such
as 50, 20, 10, 5, 2 and 1. (Recall that the head of a list is the element most easily reached.) The code
for change is based on simple observations:

• Change for zero consists of no coins at all. (Note the pattern of 0 in the first clause.)
• For a nonzero amount, try the largest available coin. If it is small enough, use it and decrease

the amount accordingly.
• Exclude from consideration any coins that are too large.

Although nobody considers making change for zero, this is the simplest way to make the algo-
rithm terminate. Most iterative procedures become simplest if, in their base case, they do nothing.
A base case of one instead of zero is often a sign of a novice programmer.

The function can terminate either with success or failure. It fails by raising exception Failure
namely if till becomes empty while amt is still nonzero. (Exceptions will be discussed later.)

Unfortunately, failure can occur even when change can be made. The greedy ‘largest coin first’
approach is to blame. Suppose we have coins of values 5 and 2, and must make change for 6; the
only way is 6 = 2 + 2 + 2, ignoring the 5. Greedy algorithms are often effective, but not here.

4.7 All Ways of Making Change

In [70]: let rec change till amt =
match till, amt with
| _ , 0 -> [[]]
| [] , _ -> []
| c::till , amt -> if amt < c then change till amt

else let rec allc = function
| [] -> []
| cs :: css -> (c::cs) :: allc css

in
allc (change (c::till) (amt - c)) @

change till amt

Out[70]: val change : int list -> int -> int list list = <fun>

Now we generalise the problem to return the list of all possible ways of making change. Look at the
type: the result is now a list of lists.

35

The code will never raise exceptions. It expresses failure by returning an empty list of solutions:
it returns [] if the till is empty and the amount is nonzero.

If the amount is zero, then there is only one way of making change; the result should be [[]]. This
is success in the base case.

In nontrivial cases, there are two sources of solutions: to use a coin (if possible) and decrease the
amount accordingly, or to remove the current coin value from consideration.

The function allc is declared locally in order to make use of c, the current coin. It adds an extra c
to all the solutions returned by the recursive call to make change for amt - c.

Observe the naming convention: cs is a list of coins, while css is a list of such lists. The trailing ‘s’
is suggestive of a plural.

This complicated program, and the even trickier one on the next slide, are included as challenges.
Are you enthusiastic enough to work them out? We shall revisit the “making change” task later
to illustrate exception-handling.

4.8 All Ways of Making Change — Faster!

In [71]: let rec change till amt chg chgs =
match till, amt with
| _ , 0 -> chg::chgs
| [] , _ -> chgs
| c::till , amt -> if amt < 0 then chgs

else change (c::till) (amt - c) (c::chg)
(change till amt chg chgs)

Out[71]: val change : int list -> int -> int list -> int list list -> int list list =
<fun>

We’ve added another accumulating parameter! Repeatedly improving simple code is called step-
wise refinement.

Two extra arguments eliminate many :: and append operations from the previous slide’s change
function. The first, chg, accumulates the coins chosen so far; one evaluation of c::chg} replaces
many evaluations of allc. The second, chgs, accumulates the list of solutions so far; it avoids the
need for append. This version runs several times faster than the previous one.

Making change is still extremely slow for an obvious reason: the number of solutions grows
rapidly in the amount being changed. Using 50, 20, 10, 5, 2 and 1, there are 4366 ways of ex-
pressing 99.

Our three change functions illustrate a basic technique: program development by stepwise refine-
ment. Begin by writing a very simple program and add requirements individually. Add efficiency
refinements last of all. Even if the simpler program cannot be included in the next version and has
to be discarded, one has learned about the task by writing it.

36

4.8.1 Exercise 4.1

Code a function to implement set union, by analogy with inter above. It should avoid introduc-
ing repetitions, for example the union of the lists [4; 7; 1] and [6; 4; 7] should be [1; 6; 4;
7] (though the order does not matter).

4.8.2 Exercise 4.2

Code a function that takes a list of integers and returns two lists, the first consisting of all non-
negative numbers found in the input and the second consisting of all the negative numbers.

4.8.3 Exercise 4.3

How does this version of zip differ from the one above?

In [72]: let rec zip xs ys =
match xs, ys with
| (x::xs, y::ys) -> (x, y) :: zip xs ys
| ([], []) -> []

File "[72]", lines 2-4, characters 2-20:
2 | ..match xs, ys with
3 | | (x::xs, y::ys) -> (x, y) :: zip xs ys
4 | | ([], []) -> []
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
(([], _::_)|(_::_, []))

Out[72]: val zip : 'a list -> 'b list -> ('a * 'b) list = <fun>

4.8.4 Exercise 4.4

What assumptions do the ‘making change’ functions make about the variables till and amt?
Describe what could happen if these assumptions were violated.

4.8.5 Exercise 4.5

Show that the number of ways of making change for n (ignoring order) is O(n) if there are two
legal coin values. What if there are three, four, . . . coin values?

4.8.6 Exercise 4.6

We know nothing about the functions f and g other than their polymorphic types: val f : 'a *
'b -> 'b * 'a and val g : 'a -> 'a list. Suppose that f (1, true) and g 0 are evaluated
and return their results. State, with reasons, what you think the resulting values will be.

37

Chapter 5

Lecture 5: Sorting

A few applications for sorting and arranging items into order are:

• search
• merging
• duplicates
• inverting tables
• graphics algorithms

Sorting is perhaps the most deeply studied aspect of algorithm design. Knuth’s series The Art of
Computer Programming devotes an entire volume to sorting and searching! Sedgewick also covers
sorting. Sorting has countless applications.

Sorting a collection allows items to be found quickly. Recall that linear search requires O(n) steps
to search among n items. A sorted collection admits binary search which requires only O(log n)
time. The idea of binary search is to compare the item being sought with the middle item (in
position n/2) and then to discard either the left half or the right, depending on the result of the
comparison. Binary search needs arrays or trees, not lists; we shall come to binary search trees
later.

Two sorted files can quickly be merged to form a larger sorted file. Other applications include
finding duplicates that, after sorting, are adjacent.

A telephone directory is sorted alphabetically by name. The same information can instead be
sorted by telephone number (useful to the police) or by street address (useful to junk-mail firms).
Sorting information in different ways gives it different applications.

Common sorting algorithms include insertion sort, quicksort, mergesort and heapsort. We shall
consider the first three of these. Each algorithm has its advantages.

As a concrete basis for comparison, runtimes are quoted for DECstation computers. (These were
based on the MIPS chip, an early RISC design.)

5.1 How Fast Can We Sort?

• typically count comparisons C(n)
• there are n! permutations of n elements

38

https://algs4.cs.princeton.edu/home/

• each comparison eliminates half of the permutations 2C(n) ≥ n!
• therefore C(n) ≥ log(n!) ≈ n log n − 1.44n

The usual measure of efficiency for sorting algorithms is the number of comparison operations
required. Mergesort requires only O(n log n) comparisons to sort an input of n items. It is straight-
forward to prove that this complexity is the best possible. There are n! permutations of n elements
and each comparison distinguishes two permutations. The lower bound on the number of com-
parisons, C(n), is obtained by solving 2C(n) ≥ n!; therefore C(n) ≥ log(n!) ≈ n log n − 1.44n.

In order to compare the sorting algorithms, we use the following source of pseudo-random num-
bers. Never mind how this works: generating statistically good random numbers is hard. Much
effort has gone into those few lines of code.

In [73]: let nextrandom seed =
let a = 16807.0 in
let m = 2147483647.0 in
let t = a *. seed in
t -. m *. (floor (t /. m))

Out[73]: val nextrandom : float -> float = <fun>

In [74]: let rec randlist (seed, seeds) = function
| 0 -> (seed, seeds)
| n -> randlist (nextrandom seed, seed::seeds) (n-1)

Out[74]: val randlist : float * float list -> int -> float * float list = <fun>

We can now bind the identifier rs to a list of 10,000 random numbers.

In [75]: let seed, rs = randlist (1.0, []) 10000

Out[75]: val seed : float = 1043618065.
val rs : float list =

[1484786315.; 925166085.; 1614852353.; 721631166.; 173942219.; 1229443779.;
789328014.; 570809709.; 1760109362.; 270600523.; 2108528931.; 16480421.;
519782231.; 162430624.; 372212905.; 1954184989.; 898872741.; 1651521688.;
1114791388.; 1325968501.; 1469981427.; 465437343.; 1732504088.;
280054095.; 1924919450.; 1244369648.; 1524535715.; 706293012.;
1372325856.; 1302473561.; 941382430.; 2137445578.; 1937168414.;
1852570660.; 495231255.; 1092873378.; 140232191.; 328129841.; 632752255.;
227857208.; 1616471915.; 719842438.; 1402481130.; 745001020.; 791471334.;
2131048000.; 312659966.; 1389551813.; 443838892.; 854190041.; 741774068.;
267473377.; 1372555293.; 1539748349.; 697860888.; 1261546017.; 734770781.;
1512111397.; 813238415.; 1034499961.; 602256496.; 462191385.; 250718457.;
246489360.; 295426232.; 468306241.; 877829533.; 1130589227.; 1914364883.;
1479854970.; 878528585.; 1268712064.; 115837978.; 1803525169.; 689954646.;
1174020926.; 651968560.; 391152461.; 1776325865.; 2015344107.; 246977673.;
1381242649.; 1115030853.; 190703911.; 316761032.; 464218769.; 1537522160.;
1958981931.; 390463588.; 224009597.; 235243732.; 620352731.; 1374109567.;
832140633.; 675075162.; 1296171190.; 2009054653.; 1534419747.; 145880482.;

39

http://www.firstpr.com.au/dsp/rand31/p1192-park.pdf

1649432515.; 403989126.; 1112417244.; 1290575192.; 896661113.; 218545469.;
1002393512.; 2131316096.; 551979127.; 932010335.; 665881436.; 1975412808.;
639877791.; 1781707137.; 894518191.; 568004958.; 1331430214.; 629489848.;
183264178.; 162027282.; 464592882.; 93302056.; 1178713033.; 1401486247.;
1846150129.; 1646978216.; 1104441491.; 111995009.; 66193165.; 2038880392.;
79340676.; 871801051.; 967550305.; 2067810758.; 1600354198.; 1746626663.;
1516388116.; 1308870791.; 173082747.; 189881227.; 478010722.; 739707315.;
255334803.; 164203714.; 1893097038.; 1587694259.; 292950569.; 918323194.;
41453146.; 1217297445.; 256768724.; 586494122.; 586258194.; 660494391.;
507554325.; 699716071.; 672895139.; 76065072.; 1594869218.; 1439459639.;
641123634.; 1650611940.; 177447368.; 301427463.; 525804524.; 553672425.;
926899509.; 794676486.; 690277940.; 2115070333.; 1062048650.; 1653192448.;
1808855340.; 126475289.; 1028198214.; 1739565096.; 1515748830.;
427491435.; 319330584.; 666483848.; 854842154.; 1853528448.; 1975611245.;
1905343266.; 1229802342.; 1416055428.; 2091603253.; 1068308139.;
198239748.; 982076370.; 1094563396.; 44402415.; 889814989.; 290736902.;
417580014.; 1935788352.; 595665917.; 367638848.; 894945148.; 1868608068.;
317883051.; 941451621.; 1595942893.; 789094274.; 1150772108.; 422742112.;
1444245279.; 1273601104.; 256005435.; 1742330161.; 1514599036.;
956344512.; 2113041793.; 293237373.; 1386995194.; 1509339194.; 891946522.;
1020832915.; 592544922.; 1746311153.; 1471539715.; 143832370.;
2041568248.; 1039556199.; 1608726047.; 1205124472.; 2123533995.;
1560620058.; 1837598795.; 1028172251.; 98318742.; 1405510706.;
1047695837.; 59221314.; 1822176683.; 1096018886.; 1528104537.;
1270922857.; 812074106.; 291115596.; 795788616.; 638657646.; 2034314619.;
1527649272.; 156357479.; 1010056202.; 1139413443.; 1110927723.;
1216083346.; 846825145.; 2100385733.; 315213605.; 1629637749.;
1139833627.; 895118866.; 296359237.; 1361440746.; 1188627020.;
1964199872.; 166733080.; 54185744.; 575493576.; 1810324496.; 1765549585.;
53514233.; 747348448.; 61758907.; 1710119765.; 188311628.; 8827553.;
67975851.; 1808633248.; 1290488843.; 1264775607.; 1711469075.;
1537468597.; 706677101.; 518290019.; 190285086.; 157683412.; 985907152.;
1571668636.; 632570698.; 791081325.; 1773794197.; 1787141077.;
1727982894.; 794213057.; 633163306.; 682601940.; 1573439414.; 1041956036.;
1169697582.; 758914445.; 2096291761.; 1502226099.; 1665995955.;
948048264.; 1596326605.; 1816773893.; ...]

5.2 Insertion Sort

An insert operation does does n/2 comparisons on average.

In [76]: let rec ins x = function
| [] -> [x]
| y::ys -> if x <= y then x :: y :: ys

else y :: ins x ys

Out[76]: val ins : 'a -> 'a list -> 'a list = <fun>

40

Insertion sort takes O(n2) comparisons on average:

In [77]: let rec insort = function
| [] -> []
| x::xs -> ins x (insort xs)

Out[77]: val insort : 'a list -> 'a list = <fun>

Items from the input are copied one at a time to the output. Each new item is inserted into the
right place so that the output is always in order.

We could easily write iterative versions of these functions, but to no purpose. Insertion sort is
slow because it does O(n2) comparisons (and a lot of list copying), not because it is recursive. Its
quadratic runtime makes it nearly useless: it takes 174 seconds for our example while the next-
worst figure is 1.4 seconds.

Insertion sort is worth considering because it is easy to code and illustrates the concepts. Two
efficient sorting algorithms, mergesort and heapsort, can be regarded as refinements of insertion
sort.

5.3 Quicksort: The Idea

The Quicksort algorithm has the following flow:

• Choose a pivot element, a
• Divide to partition the input into two sublists:

– those at most a in value
– those exceeding a

• Conquer using recursive calls to sort the sublists
• Combine the sorted lists by appending one to the other

Quicksort was invented by C. A. R. Hoare, who now works at Microsoft Research, Cambridge.
Quicksort works by divide and conquer, a basic algorithm design principle. Quicksort chooses from
the input some value a, called the pivot. It partitions the remaining items into two parts: those ≤ a,
and those > a. It sorts each part recursively, then puts the smaller part before the greater.

The cleverest feature of Hoare’s algorithm was that the partition could be done in place by exchang-
ing array elements. Quicksort was invented before recursion was well known, and people found
it extremely hard to understand. As usual, we shall consider a list version based on functional
programming.

5.4 Quicksort: The Code

In [78]: let rec quick = function
| [] -> []
| [x] -> [x]
| a::bs ->

let rec part l r = function

41

| [] -> (quick l) @ (a :: quick r)
| x::xs ->

if (x <= a) then
part (x::l) r xs

else
part l (x::r) xs

in
part [] [] bs

Out[78]: val quick : 'a list -> 'a list = <fun>

Our OCaml quicksort copies the items. It is still pretty fast, and it is much easier to understand. It
takes roughly 0.74 seconds to sort our list of random numbers.

The function declaration consists of three clauses. The first handles the empty list; the second
handles singleton lists (those of the form [x]); the third handles lists of two or more elements.
Often, lists of length up to five or so are treated as special cases to boost speed.

The locally declared function part partitions the input using a as the pivot. The arguments l and
r accumulate items for the left (≤ a) and right (> a) parts of the input, respectively.

It is not hard to prove that quicksort does n log n comparisons, in the average case (see page 94 of
Aho). With random data, the pivot usually has an average value that divides the input in two
approximately equal parts. We have the recurrence T(1) = 1 and T(n) = 2T(n/2) + n, which is
O(n log n). In our example, it is about 235 times faster than insertion sort.

In the worst case, quicksort’s running time is quadratic! An example is when its input is almost
sorted or reverse sorted. Nearly all of the items end up in one partition; work is not divided
evenly. We have the recurrence T(1) = 1 and T(n + 1) = T(n) + n, which is O(n2). Randomising
the input makes the worst case highly unlikely.

5.5 Append-Free Quicksort

In [79]: let rec quik = function
| ([], sorted) -> sorted
| ([x], sorted) -> x::sorted
| a::bs, sorted ->

let rec part = function
| l, r, [] -> quik (l, a :: quik (r, sorted))
| l, r, x::xs ->

if x <= a then
part (x::l, r, xs)

else
part (l, x::r, xs)

in
part ([], [], bs)

Out[79]: val quik : 'a list * 'a list -> 'a list = <fun>

42

https://archive.org/details/designanalysisof00ahoarich
https://archive.org/details/designanalysisof00ahoarich

The list sorted accumulates the result in the combine stage of the quicksort algorithm. We have
again used the standard technique for eliminating append. Calling quik(xs, sorted) reverses
the elements of xs and prepends them to the list sorted.

Looking closely at part, observe that quik(r, sorted) is performed first. Then a is consed to this
sorted list. Finally, quik is called again to sort the elements of l.

The speedup is significant. An imperative quicksort coded in Pascal (taken from Sedgewick) is just
slightly faster than function quik. The near-agreement is surprising because the computational
overheads of lists exceed those of arrays. In realistic applications, comparisons are the dominant
cost and the overheads matter even less.

5.6 Merging Two Lists

Merge joins two sorted lists.

In [80]: let rec merge = function
| [], ys -> ys
| xs, [] -> xs
| x::xs, y::ys ->

if x <= y then
x :: merge (xs, y::ys)

else
y :: merge (x::xs, ys)

Out[80]: val merge : 'a list * 'a list -> 'a list = <fun>

Generalises insert to two lists, and does at most m + n − 1 comparisons.

Merging means combining two sorted lists to form a larger sorted list. It does at most m + n
comparisons, where m and n are the lengths of the input lists. If m and n are roughly equal then
we have a fast way of constructing sorted lists; if n = 1 then merging degenerates to insertion,
doing much work for little gain.

Merging is the basis of several sorting algorithms; we look at a divide-and-conquer one. Mergesort
is seldom found in conventional programming because it is hard to code for arrays; it works nicely
with lists. It divides the input (if non-trivial) into two roughly equal parts, sorts them recursively,
then merges them.

Function merge is not iterative; the recursion is deep. An iterative version is of little benefit for the
same reasons that apply to append in the earlier lecture on Lists.

5.7 Top-down Merge sort

In [81]: let rec tmergesort = function
| [] -> []
| [x] -> [x]
| xs ->

let k = List.length xs / 2 in
let l = tmergesort (take k xs) in

43

https://algs4.cs.princeton.edu/20sorting/

let r = tmergesort (drop k xs) in
merge (l, r)

Out[81]: val tmergesort : 'a list -> 'a list = <fun>

O(n log n) comparisons in worst case

Mergesort’s divide stage divides the input not by choosing a pivot (as in quicksort) but by simply
counting out half of the elements. The conquer stage again involves recursive calls, and the combine
stage involves merging. Function tmergesort takes roughly 1.4 seconds to sort the list rs.

In the worst case, mergesort does O(n log n) comparisons, with the same recurrence equation as
in quicksort’s average case. Because take and drop divide the input in two equal parts (they differ
at most by one element), we always have T(n) = 2T(n/2) + n.

Quicksort is nearly 3 times as fast in the example. But it risks a quadratic worst case! Merge sort
is safe but slow. So which algorithm is best?

We have seen a top-down mergesort. Bottom-up algorithms also exist. They start with a list of
one-element lists and repeatedly merge adjacent lists until only one is left. A refinement, which
exploits any initial order among the input, is to start with a list of increasing or decreasing runs of
input items.

5.8 Summary of Sorting Algorithms

• Optimal is O(n log n) comparisons
• Insertion sort: simple to code; too slow (quadratic) [174 secs]
• Quicksort: fast on average; quadratic in worst case [0.53 secs]
• Mergesort: optimal in theory; often slower than quicksort [1.4 secs]
• Match the algorithm to the application

Quicksort’s worst case cannot be ignored. For large n, a complexity of O(n2) is catastrophic.
Mergesort has an O(n log n) worst case running time, which is optimal, but it is typically slower
than quicksort for random data.

Non-comparison sorting deserves mentioning. We can sort a large number of small integers using
their radix representation in O(n) time. This result does not contradict the comparison-counting
argument because comparisons are not used at all. Linear time is achievable only if the greatest
integer is fixed in advance; as n goes to infinity, increasingly many of the items are the same. It is
a simple special case.

Many other sorting algorithms exist. A few are outlined in the exercises.

5.8.1 Exercise 5.1

Another sorting algorithm (selection sort) consists of looking at the elements to be sorted, identify-
ing and removing a minimal element, which is placed at the head of the result. The tail is obtained
by recursively sorting the remaining elements. State, with justification, the time complexity of this
approach.

44

5.8.2 Exercise 5.2

Implement selection sort (see previous exercise) using OCaml.

5.8.3 Exercise 5.3

Another sorting algorithm (bubble sort) consists of looking at adjacent pairs of elements, exchang-
ing them if they are out of order and repeating this process until no more exchanges are possible.
State, with justification, the time complexity of this approach.

5.8.4 Exercise 5.4

Implement bubble sort (see previous exercise) using OCaml.

45

Chapter 6

Lecture 6: Datatypes and Trees

6.1 An Enumeration Type

In [82]: type vehicle = Bike
| Motorbike
| Car
| Lorry

Out[82]: type vehicle = Bike | Motorbike | Car | Lorry

• We have declared a new type named vehicle.
• . . . along with four new constants.
• They are the constructors of the datatype.

The type declaration adds a new type to our OCaml session. Type vehicle is as good as any
built-in type and even admits pattern-matching. The four new identifiers of type vehicle are
called constructors.

We could represent the various vehicles by the numbers 0–3. However, the code would be hard to
read and even harder to maintain. Consider adding Tricycle as a new vehicle. If we wanted to
add it before Bike, then all the numbers would have to be changed. Using type, such additions are
trivial and the compiler can (at least sometimes) warn us when it encounters a function declaration
that doesn’t yet have a case for Tricycle.

Representing vehicles by strings like "Bike", "Car", etc., is also bad. Comparing string values is
slow and the compiler can’t warn us of misspellings like "MOtorbike": they will make our code
fail.

Most programming languages allow the declaration of types like vehicle. Because they consist
of a series of identifiers, they are called enumeration types. Other common examples are days of
the week or colours. The compiler chooses the integers for us; type-checking prevents us from
confusing Bike with Red or Sunday.

46

6.2 Declaring a Function on Vehicles

In [83]: let wheels = function
| Bike -> 2
| Motorbike -> 2
| Car -> 4
| Lorry -> 18

Out[83]: val wheels : vehicle -> int = <fun>

• Datatype constructors can be used in patterns.
• Pattern-matching is fast, even complicated nested patterns.

The beauty of datatype declarations is that the new types behave as if they were built into OCaml.
Type-checking catches common errors, such as mixing up different datatypes in a function like
wheels, as well as missing and redundant patterns.

6.3 A Datatype whose Constructors have Arguments

In [84]: type vehicle = Bike
| Motorbike of int
| Car of bool
| Lorry of int

Out[84]: type vehicle = Bike | Motorbike of int | Car of bool | Lorry of int

• Constructors with arguments (like Lorry) make distinct values.
• Different kinds of vehicle can belong to one list: [Bike, Car true, Motorbike 450]

OCaml generalises the notion of enumeration type to allow data to be associated with each con-
structor. The constructor Bike is a vehicle all by itself, but the other three constructors create
vehicles from arguments.

Since we might find it hard to remember what the various int and bool components are for, it
is wise to include comments in complex declarations. In OCaml, comments are enclosed in the
brackets (* and *). Programmers should comment their code to explain design decisions and key
features of the algorithms (sometimes by citing a reference work).

In [85]: type vehicle = Bike
| Motorbike of int (* engine size in CCs *)
| Car of bool (* true if a Reliant Robin *)
| Lorry of int (* number of wheels *)

Out[85]: type vehicle = Bike | Motorbike of int | Car of bool | Lorry of int

The list shown on the slide represents a bicycle, a Reliant Robin and a large motorbike. It can be
almost seen as a mixed-type list containing integers and booleans. It is actually a list of vehicles;
datatypes lessen the impact of the restriction that all list elements must have the same type.

47

6.4 A Finer Wheel Computation

In [86]: let wheels = function
| Bike -> 2
| Motorbike _ -> 2
| Car robin -> if robin then 3 else 4
| Lorry w -> w

Out[86]: val wheels : vehicle -> int = <fun>

This function consists of four clauses:

• A Bike has two wheels.
• A Motorbike has two wheels.
• A Reliant Robin has three wheels; all other cars have four.
• A Lorry has the number of wheels stored with its constructor.

There is no overlap between the Motorbike and Lorry cases. Although Motorbike and Lorry both
hold an integer, OCaml takes the constructor into account. A Motorbike is distinct from any Lorry.

Vehicles are one example of a concept consisting of several varieties with distinct features. Most
programming languages can represent such concepts using something analogous to datatypes.
(They are sometimes called union types or variant records whose tag fields play the role of the con-
structors.)

A pattern may be built from the constructors of several datatypes, including lists. A pattern may
also contain integer and string constants. There is no limit to the size of patterns or the number of
clauses in a function declaration. OCaml performs pattern-matching efficiently (you do not need
to understand the details of how it optimises pattern-matching at this stage).

6.5 Error Handling: Exceptions

During a computation, what happens if something goes wrong?

• Division by zero
• Pattern matching failure

Exception-handling lets us recover gracefully.

• Raising an exception abandons the current computation.
• Handling the exception attempts an alternative computation.
• The raising and handling can be far apart in the code.
• Errors of different sorts can be handled separately.

Exceptions are necessary because it is not always possible to tell in advance whether or not a search
will lead to a dead end or whether a numerical calculation will encounter errors such as overflow
or divide by zero. Rather than just crashing, programs should check whether things have gone
wrong, and perhaps attempt an alternative computation (perhaps using a different algorithm or
higher precision). A number of modern languages provide exception handling.

48

https://dl.acm.org/citation.cfm?id=507641

6.6 Exceptions in OCaml

In [87]: exception Failure

Out[87]: exception Failure

In [88]: exception NoChange of int

Out[88]: exception NoChange of int

In [89]: raise Failure

Exception: Failure.
Called from file "toplevel/toploop.ml", line 208, characters 17-27

In [90]: try
print_endline "pre exception";
raise (NoChange 1);
print_endline "post exception";

with
| NoChange _ ->

print_endline "handled a NoChange exception"

File "[90]", line 3, characters 2-20:
3 | raise (NoChange 1);

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
Warning 21: this statement never returns (or has an unsound type.)

pre exception
handled a NoChange exception

File "[90]", line 3, characters 2-20:
3 | raise (NoChange 1);

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
Warning 21: this statement never returns (or has an unsound type.)

Out[90]: - : unit = ()

Each exception declaration introduces a distinct sort of exception, which can be handled sepa-
rately from others. If E raises an exception, then its evaluation has failed; handling an exception
means evaluating another expression and returning its value instead. One exception handler can
specify separate expressions for different sorts of exceptions.

Exception names are constructors of the special datatype exn. This is a peculiarity of OCaml that

49

lets exception-handlers use pattern-matching. Note that exception Failure is just an error indica-
tion, while NoChange n carries further information: the integer n.

The effect of raise <expr> is to jump to the most recently-encountered handler that matches
<expr>. The matching handler can only be found dynamically (during execution); contrast with
how OCaml associates occurrences of identifiers with their matching declarations, which does not
require running the program.

One criticism of OCaml’s exceptions is that—unlike the Java language—nothing in a function
declaration indicates which exceptions it might raise. One alternative to exceptions is to instead
return a value of datatype option.

In [91]: let x = Some 1

Out[91]: val x : int option = Some 1

In [92]: let y = None

Out[92]: val y : 'a option = None

In [93]: type 'a option = None | Some of 'a

Out[93]: type 'a option = None | Some of 'a

None signifies an error, while Some x returns the solution x. This approach looks clean, but the
drawback is that many places in the code would have to check for None. Despite this, there is a
builtin option type in OCaml as it is so useful.

6.7 Making Change with Exceptions

In [94]: exception Change
let rec change till amt =

match till, amt with
| _, 0 -> []
| [], _ -> raise Change
| c::till, amt -> if amt < 0 then raise Change

else try c :: change (c::till) (amt - c)
with Change -> change till amt

Out[94]: exception Change

Out[94]: val change : int list -> int -> int list = <fun>

In the Lists lectures, we considered the problem of making change. The greedy algorithm pre-
sented there could not express “6 using 5 and 2” because it always took the largest coin. Return-
ing the list of all possible solutions avoids that problem rather expensively: we only need one
solution.

50

Using exceptions, we can code a backtracking algorithm: one that can undo past decisions if it
comes to a dead end. The exception Change is raised if we run out of coins (with a non-zero
amount) or if the amount goes negative. We always try the largest coin, but enclose the recursive
call in an exception handler, which undoes the choice if it goes wrong.

Carefully observe how exceptions interact with recursion. The exception handler always undoes
the most recent choice, leaving others possibly to be undone later. If making change really is im-
possible, then eventually exception Change will be raised with no handler to catch it, and it will
be reported at top level.

6.8 Making Change: A Trace

Here is the full execution. Observe how the exception handlers nest and how they drop away once
the given expression has returned a value.

51

change [5; 2] 6 ⇒ try 5::change [5; 2] 1
with Change -> change [2] 6

⇒ try 5::(try 5::change [5; 2] (-4)
with Change -> change [2] 1)
with Change -> change [2] 6

⇒ 5::(change [2] 1)
with Change -> change [2] 6

⇒ try 5::(try 2::change [2] (-1)
with Change -> change [] 1)
with Change -> change [2] 6

⇒ try 5::(change [] 1)
with Change -> change [2] 6

⇒ change [2] 6
⇒ try 2::change [2] 4

with Change -> change [] 6
⇒ try 2::(try 2::change [2] 2

with Change -> change [] 4)
with Change -> change [] 6

⇒ try 2::(try 2::(try 2::change [2] 0
with Change -> change [] 2)
with Change -> change [] 4)
with Change -> change [] 6

⇒ try 2::(try 2::[2]
with Change -> change [] 4)
with Change -> change [] 6

⇒ try 2::[2; 2]
with Change -> change [] 6

⇒ [2; 2; 2]

6.9 Binary Trees, a Recursive Datatype

In [95]: type 'a tree =
Lf

| Br of 'a * 'a tree * 'a tree

Out[95]: type 'a tree = Lf | Br of 'a * 'a tree * 'a tree

52

In [96]: Br(1, Br(2, Br(4, Lf, Lf),
Br(5, Lf, Lf)),

Br(3, Lf, Lf))

Out[96]: - : int tree = Br (1, Br (2, Br (4, Lf, Lf), Br (5, Lf, Lf)), Br (3, Lf, Lf))

A data structure with multiple branching is called a “tree”. Trees can represent mathematical
expressions, logical formulae, computer programs, the phrase structure of English sentences, etc.

Binary trees are nearly as fundamental as lists. They can provide efficient storage and retrieval of
information. In a binary tree, each node is empty (L f), or is a branch (Br) with a label and two
subtrees.

OCaml lists are a datatype and could be declared as follows:

In [97]: type 'a mylist =
| Nil
| Cons of 'a * 'a mylist

Out[97]: type 'a mylist = Nil | Cons of 'a * 'a mylist

We could even declare :: as an infix constructor. The only thing we could not define is the [...]
notation, which is part of the OCaml grammar (although there does exist a mechanism to use a
similar syntax for custom indexed datatypes).

A recursive type does not have to be polymorphic. For example, here is a simple datatype of tree
shapes with no attached data that is recursive but not polymorphic.

In [98]: type shape =
| Null
| Join of shape * shape

Out[98]: type shape = Null | Join of shape * shape

The datatype 'a option (mentioned above) is the opposite – it is polymorphic, but not recursive.

6.10 Basic Properties of Binary Trees

In [99]: let rec count = function
| Lf -> 0 (* number of branch nodes *)
| Br (v, t1, t2) -> 1 + count t1 + count t2

Out[99]: val count : 'a tree -> int = <fun>

53

In [100]: let rec depth = function
| Lf -> 0 (* length of longest path *)
| Br (v, t1, t2) -> 1 + max (depth t1) (depth t2)

Out[100]: val depth : 'a tree -> int = <fun>

The invariant count(t) ≤ 2depth(t) − 1 holds in the functions above.

Functions on trees are expressed recursively using pattern-matching. Both functions above are
analogous to length on lists. Here is a third measure of a tree’s size:

In [101]: let rec leaves = function
| Lf -> 1
| Br (v, t1, t2) -> leaves t1 + leaves t2

Out[101]: val leaves : 'a tree -> int = <fun>

This function is redundant because of a basic fact about trees, which can be proved by induction:
for every tree t, we have leaves(t) = count(t) + 1. The inequality shown on the slide also has an
elementary proof by induction.

A tree of depth 20 can store 220 − 1 or approximately one million elements. The access paths to
these elements are short, particularly when compared with a million-element list!

6.10.1 Exercise 6.1

Give the declaration of an OCaml type for the days of the week. Comment on the practicality of
such a type in a calendar application.

6.10.2 Exercise 6.2

Write an OCaml function taking a binary tree labelled with integers and returning their sum.

6.10.3 Exercise 6.3

Using the definition of 'a tree from before:

In [102]: type 'a tree = Lf | Br of 'a * 'a tree * 'a tree

Out[102]: type 'a tree = Lf | Br of 'a * 'a tree * 'a tree

Examine the following function declaration. What does ftree (1, n) accomplish?

In [103]: let rec ftree k n =
if n = 0 then Lf
else Br (k, ftree (2 * k) (n - 1), ftree (2 * k + 1) (n - 1))

Out[103]: val ftree : int -> int -> int tree = <fun>

54

6.10.4 Exercise 6.4

Give the declaration of an OCaml type for arithmetic expressions that have the following possi-
bilities: floating-point numbers, variables (represented by strings), or expressions of the form −E,
E + E, E × E.

6.10.5 Exercise 6.5

Continuing the previous exercise, write a function that evaluates an expression. If the expression
contains any variables, your function should raise an exception indicating the variable name.

55

Chapter 7

Lecture 7: Dictionaries and Functional
Arrays

7.1 Dictionaries

• lookup: find an item in the dictionary
• update (insert): replace (store) an item in the dictionary
• delete: remove an item from the dictionary
• empty: the null dictionary
• Missing: exception for errors in lookup and delete

Ideally, an abstract type should provide these operations and hide the internal data structures.

A dictionary attaches values to identifiers, called “keys”. Before choosing the internal representa-
tion for a data structure, you need to specify the full set of operations. In fact, here we only con-
sider update (associating a value with an identifier) and lookup (retrieving such a value). Deletion
is more difficult and would limit our choices. Some applications may need additional operations,
such as merge (combining two dictionaries). We shall see that update can be done efficiently in a
functional style, without excessive copying.

An abstract type provides specified operations while hiding low-level details, such as the data
structure used to represent dictionaries. Abstract types can be declared in any modern program-
ming language. Java’s objects serve this role, as do OCaml’s modules. This course does not cover
modules, and we simply declare the dictionary operations individually.

An association list (a list of pairs) is the simplest dictionary representation. Lookup is by linear
search, and therefore slow: O(n). Association lists are only usable if there are few keys in use.
However, they are general in that the keys do not need a concept of ordering, only equality.

In [104]: exception Missing

Out[104]: exception Missing

In [105]: let rec lookup a = function
| [] -> raise Missing
| (x, y) :: pairs ->

56

if a = x then y
else lookup a pairs

Out[105]: val lookup : 'a -> ('a * 'b) list -> 'b = <fun>

In [106]: let update (l, b, y) = (b, y) :: l

Out[106]: val update : ('a * 'b) list * 'a * 'b -> ('a * 'b) list = <fun>

To enter a new (key, value) pair, simply “cons” it to the list with update. This takes constant
time, which is the best we could hope for. But the space requirement is huge: linear in the number
of updates, not in the number of distinct keys. Obsolete entries are never deleted: that would
require first finding them, increasing the update time from O(1) to O(n).

7.2 Binary Search Trees

A dictionary associates values (here, numbers) with keys.

Binary search trees are an important application of binary trees. They work for keys that have a
total ordering, such as strings. Each branch of the tree carries a (key, value) pair; its left subtree
holds smaller keys; the right subtree holds greater keys. If the tree remains reasonably balanced,
then update and lookup both take O(log n) for a tree of size n. These times hold in the average
case; given random data, the tree is likely to remain balanced.

At a given node, all keys in the left subtree are smaller (or equal) while all trees in the right subtree
are greater.

An unbalanced tree has a linear access time in the worst case. Examples include building a tree by
repeated insertions of elements in increasing or decreasing order; there is a close resemblance to
quicksort. Building a binary search tree, then converting it to inorder, yields a sorting algorithm
called treesort.

Self-balancing trees, such as Red-Black trees, attain O(log n) in the worst case. They are compli-
cated to implement.

7.3 Lookup: Seeks Left or Right

In [107]: exception Missing of string

Out[107]: exception Missing of string

57

In [108]: let rec lookup b = function
| Br ((a, x), t1, t2) ->

if b < a then
lookup b t1

else if a < b then
lookup b t2

else
x

| Lf -> raise (Missing b)

Out[108]: val lookup : string -> (string * 'a) tree -> 'a = <fun>

Guaranteed O(log n) access time if the tree is balanced!

Lookup in the binary search tree goes to the left subtree if the desired key is smaller than the
current one and to the right if it is greater. It raises Missing if it encounters an empty tree.

Since an ordering is involved, we have to declare the functions for a specific type, here string.
Now exception Missing mentions that type: if lookup fails, the exception returns the missing key.
The exception could be eliminated using type option of our earlier Datatypes lecture, using the
constructor None for failure.

7.4 Update

In [109]: let rec update k v = function
| Lf -> Br ((k, v), Lf, Lf)
| Br ((a, x), t1, t2) ->

if k < a then
Br ((a, x), update k v t1, t2)

else if a < k then
Br ((a, x), t1, update k v t2)

else (* a = k *)
Br ((a, v), t1, t2)

Out[109]: val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>

This is also O(log n) as it copies the path only, and not whole subtrees!

If you are familiar with the usual update operation for this sort of tree, you may wonder whether
it can be implemented in OCaml, where there is no direct way to replace part of a data structure
by something else.

The update operation is a nice piece of functional programming. It searches in the same manner
as lookup, but the recursive calls reconstruct a new tree around the result of the update. One
subtree is updated and the other left unchanged. The internal representation of trees ensures that
unchanged parts of the tree are not copied, but shared. Therefore, update copies only the path from
the root to the new node. Its time and space requirements, for a reasonably balanced tree, are both
O(log n).

58

The comparison between b and a allows three cases: - smaller: update the left subtree; share the
right - greater: update the right subtree; share the left - equal: update the label and share both
subtrees

Note: in the function definition, (* a = b*) is a comment. Comments in OCaml are enclosed in
the brackets (* and *).

7.5 Aside: Traversing Trees (3 Methods)

In [110]: let rec preorder = function
| Lf -> []
| Br (v, t1, t2) ->

[v] @ preorder t1 @ preorder t2

Out[110]: val preorder : 'a tree -> 'a list = <fun>

In [111]: let rec inorder = function
| Lf -> []
| Br (v, t1, t2) ->

inorder t1 @ [v] @ inorder t2

Out[111]: val inorder : 'a tree -> 'a list = <fun>

In [112]: let rec postorder = function
| Lf -> []
| Br (v, t1, t2) ->

postorder t1 @ postorder t2 @ [v]

Out[112]: val postorder : 'a tree -> 'a list = <fun>

Tree traversal means examining each node of a tree in some order. D. E. Knuth has identified
three forms of tree traversal: preorder, inorder and postorder. We can code these “visiting orders”
as functions that convert trees into lists of labels. Algorithms based on these notions typically
perform some action at each node; the functions above simply copy the nodes into lists. Consider
the tree:

• preorder visits the label first (“Polish notation”), yielding ABDECFG
• inorder visits the label midway, yielding DBEAFCG
• postorder visits the label last (“Reverse Polish”), yielding DEBFGCA. You will be familiar with

this concept if you own an RPN calculator.

What is the use of inorder? Consider applying it to a binary search tree: the result is a sorted list
of pairs. We could use this, for example, to merge two binary search trees. It is not difficult to
transform a sorted list of pairs into a binary search tree.

59

https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

7.6 Efficiently Traversing Trees

Unfortunately, the functions shown on the previous slide are quadratic in the worst case: the
appends in the recursive calls are inefficient. To correct that problem, we (as usual) add an accu-
mulating argument. Observe how each function constructs its result list and compare with how
appends were eliminated from quicksort in the Sorting lecture.

In [113]: let rec preord = function
| Lf, vs -> vs
| Br (v, t1, t2), vs ->

v :: preord (t1, preord (t2, vs))

Out[113]: val preord : 'a tree * 'a list -> 'a list = <fun>

In [114]: let rec inord = function
| Lf, vs -> vs
| Br (v, t1, t2), vs ->

inord (t1, v::inord (t2, vs))

Out[114]: val inord : 'a tree * 'a list -> 'a list = <fun>

In [115]: let rec postord = function
| Lf, vs -> vs
| Br (v, t1, t2), vs ->

postord (t1, postord (t2, v::vs))

Out[115]: val postord : 'a tree * 'a list -> 'a list = <fun>

One can prove equations relating each of these functions to its counterpart on the previous slide.
For example:

inord(t, vs) = inorder(t)@vs

These three types of tree traversal are related in that all are depth-first. They each traverse the left
subtree in full before traversing the right subtree. Breadth-first search (from the Queues lecture) is
another possibility. That involves going through the levels of a tree one at a time.

7.7 Arrays

• A conventional array is an indexed storage area.
– It is updated in place by the command a.(k) <- x
– The concept is inherently imperative.

• A functional array is a finite map from integers to data.
– Updating implies copying to return update(A, k, x)
– The new array equals A except that A[k] = x.

• Can we do updates efficiently?

60

The elements of a list can only be reached by counting from the front. Elements of a tree are
reached by following a path from the root. An array hides such structural matters; its elements are
uniformly designated by number. Immediate access to arbitrary parts of a data structure is called
random access.

Arrays are the dominant data structure in conventional programming languages. The ingenious
use of arrays is the key to many of the great classical algorithms, such as Hoare’s original quicksort
(the partition step) and Warshall’s transitive-closure algorithm.

The drawback is that subscripting is a chief cause of programmer error. That is why arrays play
little role in this introductory course.

Functional arrays are described below in order to illustrate another way of using trees to organise
data. Here is a summary of basic dictionary data structures in order of decreasing generality and
increasing efficiency:

• Linear search: Most general, needing only equality on keys, but inefficient: linear time.
• Binary search: Needs an ordering on keys. Logarithmic access time in the average case, but

our binary search trees are linear in the worst case.
• Array subscripting: Least general, requiring keys to be integers, but even worst-case time is

logarithmic.

7.8 Functional Arrays as Binary Trees

The path to element i follows the binary code for i (its “subscript”).

This simple representation (credited to W. Braun) ensures that the tree is balanced. Complexity of
access is always O(log n), which is optimal. For actual running time, access to conventional arrays
is much faster: it requires only a few hardware instructions. Array access is often taken to be O(1),
which (as always) presumes that hardware limits are never exceeded.

The lower bound for array indices is one. The upper bound starts at zero (which signifies the
empty array) and can grow without limit. Inspection of the diagram above should make it clear
that these trees are always balanced: the left subtree can have at most one node more than the
right subtree, recursively all the way down. (This assumes that the array is defined for subscripts
1 . . . n with no gaps; an array defined only for odd numbers, for example, would obviously be
unbalanced.)

The numbers in the diagram above are not the labels of branch nodes, but indicate the positions of
array elements. For example, the label corresponding to A[2] is at the position shown. The nodes
of a functional array are labelled with the data we want to store, not with these integers.

61

7.9 The Lookup Function

In [116]: exception Subscript
let rec sub = function
| Lf, _ -> raise Subscript (* Not found *)
| Br (v, t1, t2), k ->

if k = 1 then v
else if k mod 2 = 0 then

sub (t1, k / 2)
else

sub (t2, k / 2)

Out[116]: exception Subscript

Out[116]: val sub : 'a tree * int -> 'a = <fun>

In [117]: let rec sub = function (* Alternative implementation *)
| Lf, _ -> raise Subscript
| Br (v, t1, t2), 1 -> v
| Br (v, t1, t2), k when k mod 2 = 0 -> sub (t1, k / 2)
| Br (v, t1, t2), k -> sub (t2, k / 2)

Out[117]: val sub : 'a tree * int -> 'a = <fun>

The lookup function sub, divides the subscript by 2 until 1 is reached. If the remainder is 0 then
the function follows the left subtree, otherwise the right. If it reaches a leaf, it signals error by
raising exception Subscript.

Array access can also be understood in terms of the subscript’s binary code. Because the subscript
must be a positive integer, in binary it has a leading one. Discard this one and reverse the remain-
ing bits. Interpreting zero as left and one as right yields the path from the root to the subscript.

Popular literature often explains the importance of binary as being led by hardware: because a
circuit is either on or off. The truth is almost the opposite. Designers of digital electronics go
to a lot of trouble to suppress the continuous behaviour that would naturally arise. The real
reason why binary is important is its role in algorithms: an if-then-else decision leads to binary
branching.

Data structures, such as trees, and algorithms, such as mergesort, use binary branching in order
to reduce a cost from O(n) to O(log n). Two is the smallest integer divisor that achieves this
reduction. (Larger divisors are only occasionally helpful, as in the case of B-trees, where they
reduce the constant factor.) The simplicity of binary arithmetic compared with decimal arithmetic
is just another instance of the simplicity of algorithms based on binary choices.

7.10 The Update Function

In [118]: let rec update = function
| Lf, k, w ->

62

if k = 1 then
Br (w, Lf, Lf)

else
raise Subscript (* Gap in tree *)

| Br (v, t1, t2), k, w ->
if k = 1 then

Br (w, t1, t2)
else if k mod 2 = 0 then

Br (v, update (t1, k / 2, w), t2)
else

Br (v, t1, update (t2, k / 2, w))

Out[118]: val update : 'a tree * int * 'a -> 'a tree = <fun>

The update function also divides the subscript repeatedly by two. When it reaches a value of one,
it has identified the element position. Then it replaces the branch node by another branch with
the new label.

A leaf may be replaced by a branch, extending the array, provided no intervening nodes have
to be generated. This suffices for arrays without gaps in their subscripting. (The data structure
can be modified to allow sparse arrays, where most subscript positions are undefined.) Exception
Subscript indicates that the subscript position does not exist and cannot be created. This use of
exceptions is not easily replaced by None and Some.

Note that there are two tests involving k = 1. If we have reached a leaf, it returns a branch,
extending the array by one. If we are still at a branch node, then the effect is to update an existing
array element.

A similar function can shrink an array by one.

7.10.1 Exercise 7.1

Draw the binary search tree that arises from successively inserting the following pairs into the
empty tree: ("Alice", 6), ("Tobias", 2), ("Gerald", 8), ("Lucy", 9). Then repeat this task
using the order ("Gerald", 8), ("Alice", 6), ("Lucy", 9), ("Tobias", 2). Why are results
different?

7.10.2 Exercise 7.2

Code an insertion function for binary search trees. It should resemble the existing update function
except that it should raise the exception Collision if the item to be inserted is already present.

7.10.3 Exercise 7.3

Continuing the previous exercise, it would be natural for exceptional Collision to return the
value previously stored in the dictionary. Why is that goal difficult to achieve?

63

7.10.4 Exercise 7.4

Describe an algorithm for deleting an entry from a binary search tree. Comment on the suitability
of your approach.

7.10.5 Exercise 7.5

Code the delete function outlined in the previous exercise.

7.10.6 Exercise 7.6

Show that the functions preorder, inorder and postorder all require O(n2) time in the worst
case, where n is the size of the tree.

7.10.7 Exercise 7.7

Show that the functions preord, inord and postord all take linear time in the size of the tree.

7.10.8 Exercise 7.8

Write a function to remove the first element from a functional array. All the other elements are to
have their subscripts reduced by one. The cost of this operation should be linear in the size of the
array.

64

Chapter 8

Lecture 8: Functions as Values

In OCaml, functions can be

• passed as arguments to other functions,
• returned as results,
• put into lists, trees, etc.,
• but not tested for equality.

In [119]: [(fun n -> n * 2);
(fun n -> n * 3);
(fun n -> n + 1)]

Out[119]: - : (int -> int) list = [<fun>; <fun>; <fun>]

Progress in programming languages can be measured by what abstractions they admit. Condi-
tional expressions (descended from conditional jumps based on the sign of some numeric vari-
able) and parametric types such as α list are examples. The idea that functions could be used as
values in a computation arose early, but it took some time before the idea was fully realised. Many
programming languages let functions be passed as arguments to other functions, but few take the
trouble needed to allow functions to be returned as results.

In mathematics, a functional or higher-order function is a function that operates on other functions.
Many functionals are familiar from mathematics: for example, the differential operator maps func-
tions to their derivatives, which are also functions. To a mathematician, a function is typically an
infinite, uncomputable object. We use OCaml functions to represent algorithms. Sometimes they
represent infinite collections of data given by computation rules.

Functions cannot be compared for equality. We could compare the machine addresses of the com-
piled code, but that would merely be a test of identity: it would regard any two separate functions
as unequal even if they were compiled from identical pieces of source code. Such a low-level
feature has no place in a principled language.

65

8.1 Functions Without Names

If functions are to be regarded as computational values, then we need a notation for them. The
fun notation expresses a non-recursive function value without giving the function a name.

fun x → E is the function f such that f (x) = E. The function fun n -> n*2 is a doubling function.

In [120]: fun n -> n * 2

Out[120]: - : int -> int = <fun>

In [121]: (fun n -> n * 2) 17

Out[121]: - : int = 34

The main purpose of fun-notation is to package up small expressions that are to be applied repeat-
edly using some other function. The expression fun n -> n*2 has the same value as the identifier
double, declared as follows:

In [122]: let double n = n * 2

Out[122]: val double : int -> int = <fun>

The fun notation can also do pattern matching, and the function keyword adds an anonymous
variable name to pattern match against. The following functions are all equivalent, with the latter
definitions bound to the is_zero value and the earlier ones anonymous:

In [123]: fun x -> match x with 0 -> true | _ -> false

Out[123]: - : int -> bool = <fun>

In [124]: function 0 -> true | _ -> false

Out[124]: - : int -> bool = <fun>

In [125]: let is_zero = fun x -> match x with 0 -> true | _ -> false

Out[125]: val is_zero : int -> bool = <fun>

In [126]: let is_zero = function 0 -> true | _ -> false

Out[126]: val is_zero : int -> bool = <fun>

8.2 Curried Functions

A curried function returns another function as its result.

In [127]: let prefix = fun a -> fun b -> a ^ b

66

Out[127]: val prefix : string -> string -> string = <fun>

In [128]: let promote = prefix "Senior "

Out[128]: val promote : string -> string = <fun>

In [129]: prefix "Junior " "Professor"

Out[129]: - : string = "Junior Professor"

In [130]: promote "Professor"

Out[130]: - : string = "Senior Professor"

A short form for the definition of prefix is simply to pass multiple arguments to the function
definition. The following two definitions are equivalent in OCaml:

In [131]: let prefix = fun a -> fun b -> a ^ b

Out[131]: val prefix : string -> string -> string = <fun>

In [132]: let prefix a b = a ^ b

Out[132]: val prefix : string -> string -> string = <fun>

Currying is the technique of expressing a function taking multiple arguments as nested functions,
each taking a single argument. The fun-notation lets us package n*2 as the function fun n -> n *
2, but what if there are several variables, as in fun n -> n * 2 + k? A function of two arguments
could be coded using pattern-matching on pairs, writing fun (n, k) -> n * 2 + k.

Currying is an alternative, where we nest the fun-notation:

In [133]: fun k -> fun n -> n * 2 + k

Out[133]: - : int -> int -> int = <fun>

Applying this curried function to the argument 1 yields another function, in which k has been
replaced by 1:

In [134]: let fn = fun k -> fun n -> n * 2 + k

Out[134]: val fn : int -> int -> int = <fun>

In [135]: let fn' = fn 1 (* n * 2 + 1 *)

Out[135]: val fn' : int -> int = <fun>

In [136]: fn' 3 (* 3 * 2 + 1 *)

67

Out[136]: - : int = 7

And this function, when applied to 3, yields the result 7. The two arguments are supplied one
after another.

The example on the slide is similar but refers to the expression aˆb, where ˆ is the infix operator
for string concatenation. Function promote binds the first argument of prefix to "Professor";
the resulting function prefixes that title to any string to which it is applied.

8.3 Shorthand for Curried Functions

A function-returning function is just a function of two arguments.

This curried function syntax is nicer than nested fun binders:

In [137]: let prefix a b = a ^ b

Out[137]: val prefix : string -> string -> string = <fun>

In [138]: let dub = prefix "Sir "

Out[138]: val dub : string -> string = <fun>

Curried functions allows partial application (to the first argument).

In OCaml, an n-argument curried function f can be declared using the syntax:

let f x1 . . . xn = E

and applied using the syntax:

E1 . . . En

If f is not recursive, then it is equivalent to the function expressed via nesting as follows:

fun x1 → · · · → fun xn → E

We now have two ways of expressing functions of multiple arguments: either by passing a pair of
arguments or by currying. Currying allows partial application which is useful when fixing the first
argument yields a function that is interesting in its own right. An example from mathematics is
the function xy, where fixing y = 2 yields a function in x alone, namely squaring. Similarly, y = 3
yields cubing, while y = 1 yields the identity function.

Though the function hd (which returns the head of a list) is not curried, it may be used with the
curried application syntax in some expressions:

In [139]: List.hd [dub; promote] "Hamilton"

68

Out[139]: - : string = "Sir Hamilton"

Here List.hd is applied to a list of functions, and the resulting function dub is then applied to the
string "Hamilton". The idea of executing code stored in data structures reaches its full develop-
ment in object-oriented programming, like in Java.

8.4 Partial Application: A Curried Insertion Sort

In [140]: let insort lessequal =
let rec ins x = function

| [] -> [x]
| y::ys -> if lessequal x y then x :: y :: ys

else y :: ins x ys
in
let rec sort = function

| [] -> []
| x::xs -> ins x (sort xs)

in
sort

Out[140]: val insort : ('a -> 'a -> bool) -> 'a list -> 'a list = <fun>

The sorting functions we discussed in earlier lectures are coded to sort floating-point numbers.
They can be generalised to an arbitrary ordered type by passing the ordering predicate lessequal
as an argument.

Functions ins and sort are declared locally, referring to lessequal. Though it may not be ob-
vious, insort is a curried function. Given its first argument, a predicate for comparing some
particular type of items, it returns the function sort for sorting lists of that type of items.

Some examples of its use:

In [141]: insort (<=) [5; 3; 9; 8]

Out[141]: - : int list = [3; 5; 8; 9]

In [142]: insort (<=) ["bitten"; "on"; "a"; "bee"]

Out[142]: - : string list = ["a"; "bee"; "bitten"; "on"]

In [143]: insort (>=) [5; 3; 9; 8]

Out[143]: - : int list = [9; 8; 5; 3]

An obscure point: the syntax (<=) denotes the comparison operator as a function, which is then
given to insort. Passing the relation ≥ for lessequal gives a decreasing sort. This is no coding
trick; it is justified in mathematics, since if ≤ is a partial ordering then so is ≥.

69

8.5 map: the “Apply to All” Function

In [144]: let rec map f = function
| [] -> []
| x::xs -> (f x) :: map f xs

Out[144]: val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

In [145]: map (fun s -> s ^ "ppy") ["Hi"; "Ho"]

Out[145]: - : string list = ["Hippy"; "Hoppy"]

In [146]: map (map double) [[1]; [2; 3]]

Out[146]: - : int list list = [[2]; [4; 6]]

The functional map applies a function to every element of a list, returning a list of the function’s
results. “Apply to all” is a fundamental operation and we shall see several applications of it below.
We again see the advantages of fun-notation, currying and map. If we did not have them, the first
example on the slide would require a preliminary function declaration:

In [147]: let rec sillylist = function
| [] -> []
| s::ss -> (s ^ "ppy") :: sillylist ss

Out[147]: val sillylist : string list -> string list = <fun>

An expression containing several applications of functionals—such as our second example—can
abbreviate a long series of declarations. Sometimes this coding style is cryptic, but it can be clear
as crystal. Treating functions as values lets us capture common program structures once and for
all.

In the second example, double is the obvious integer doubling function we defined earlier. Note
that map is a built-in OCaml function in the form of List.map. OCaml’s standard library includes,
among much else, many list functions.

8.6 Example: Matrix Transpose

(
a b c
d e f

)T

=

a d
b e
c f

In [148]: let rec transp = function

| []::_ -> []
| rows -> (map List.hd rows) ::

(transp (map List.tl rows))

Out[148]: val transp : 'a list list -> 'a list list = <fun>

70

A matrix can be viewed as a list of rows, each row a list of matrix elements. This representation
is not especially efficient compared with the conventional one (using arrays). Lists of lists turn
up often, though, and we can see how to deal with them by taking familiar matrix operations
as examples. ML for the Working Programmer goes as far as Gaussian elimination, which presents
surprisingly few difficulties.

The transpose of the matrix
(

a b c
d e f

)
is
(

a d
b e
c f

)
, which in OCaml corresponds to the following trans-

formation on lists of lists:

[[a; b; c]; [d; e; f]] ⇒ [[a; d]; [b; e]; [c; f]]

The workings of function transp are simple. If rows is the matrix to be transposed, then map hd
extracts its first column and map tl extracts its second column:

map hd rows ⇒ [a; d]
map tl rows ⇒ [[b; c]; [e; f]]

A recursive call transposes the latter matrix, which is then given the column [a; d] as its first
row. The two functions expressed using map would otherwise have to be declared separately.

8.7 Review of Matrix Multiplication

(
A1 · · · Ak

)
·

B1
...

Bk

 =
(

A1B1 + · · ·+ AkBk
)

The right side is the vector dot product A⃗ · B⃗. Repeat for each row of A and column of B.

The dot product of two vectors is

(a1, . . . , ak) · (b1, . . . , bk) = a1b1 + · · ·+ akbk

A simple case of matrix multiplication is when A consists of a single row and B consists of a single
column. Provided A and B contain the same number k of elements, multiplying them yields a
1 × 1 matrix whose single element is the dot product shown above.

If A is an m × k matrix and B is a k × n matrix then A × B is an m × n matrix. For each i and j, the
(i, j) element of A × B is the dot product of row i of A with column j of B.

2 0
3 −1
0 1
1 1

(
1 0 2
4 −1 0

)
=

2 0 4
−1 1 6
4 −1 0
5 −1 2

The (1, 1) element above is computed by

(2, 0) · (1, 4) = 2 × 1 + 0 × 4 = 2.

71

Coding matrix multiplication in a conventional programming language usually involves three
nested loops. It is hard to avoid mistakes in the subscripting, which often runs slowly due to
redundant internal calculations.

8.8 Matrix Multiplication in OCaml

Dot product of two vectors—a curried function

In [149]: let rec dotprod xs ys =
match xs, ys with
| [], [] -> 0.0
| x::xs, y::ys -> (x *. y) +. (dotprod xs ys)

File "[149]", lines 2-4, characters 2-48:
2 | ..match xs, ys with
3 | | [], [] -> 0.0
4 | | x::xs, y::ys -> (x *. y) +. (dotprod xs ys)
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
((_::_, [])|([], _::_))

Out[149]: val dotprod : float list -> float list -> float = <fun>

Matrix product

In [150]: let rec matprod arows brows =
let cols = transp brows in
map (fun row -> map (dotprod row) cols) arows

Out[150]: val matprod : float list list -> float list list -> float list list = <fun>

The transp brows converts B into a list of columns, yielding a list whose elements are the columns
of B. Each row of A × B is obtained by multiplying a row of A by the columns of B.

Because dotprod is curried, it can be applied to a row of A. The resulting function is applied to all
the columns of B. We have another example of currying and partial application.

The outer map applies dotprod to each row of A. The inner map, using fun-notation, applies
dotprod row to each column of B. Compare with the version in ML for the Working Programmer
(page 89) which does not use map and requires two additional function declarations.

In the dot product function, the two vectors must have the same length. Otherwise, exception
Match_failure is raised.

8.9 List Functionals for Predicates

In [151]: let rec exists p = function
| [] -> false
| x::xs -> (p x) || (exists p xs)

72

Out[151]: val exists : ('a -> bool) -> 'a list -> bool = <fun>

In [152]: let rec filter p = function
| [] -> []
| x::xs ->

if p x then
x :: filter p xs

else
filter p xs

Out[152]: val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

A predicate is a boolean-valued function.

The functional exists transforms a predicate into a predicate over lists. Given a list, exists p
tests whether or not some list element satisfies p (making it return true). If it finds one, it stops
searching immediately, thanks to the behaviour of the lazy || operator.

Dually, we have a functional to test whether all list elements satisfy the predicate. If it finds a
counterexample then it, too, stops searching.

In [153]: let rec all p = function
| [] -> true
| x::xs -> (p x) && all p xs

Out[153]: val all : ('a -> bool) -> 'a list -> bool = <fun>

The filter functional, like map, transforms lists. It applies a predicate to all the list elements, but
instead of returning the resulting values (which could only be true or false), it returns the list of
elements satisfying the predicate.

8.10 Applications of the Predicate Functionals

In [154]: let member y xs =
exists (fun x -> x=y) xs

Out[154]: val member : 'a -> 'a list -> bool = <fun>

In [155]: let inter xs ys =
filter (fun x -> member x ys) xs

Out[155]: val inter : 'a list -> 'a list -> 'a list = <fun>

Testing whether two lists have no common elements

In [156]: let disjoint xs ys =
all (fun x -> all (fun y -> x<>y) ys) xs

73

Out[156]: val disjoint : 'a list -> 'a list -> bool = <fun>

The Lists lecture presented the function member, which tests whether a specified value can be
found as a list element, and inter, which returns the “intersection” of two lists: the list of elements
they have in common.

But remember: the purpose of list functionals is not to replace the declarations of popular func-
tions, which probably are available already. It is to eliminate the need for separate declarations
of ad-hoc functions. When they are nested, like the calls to all in disjoint above, the inner
functions are almost certainly one-offs, not worth declaring separately.

Our primitives themselves can be seen as a programming language. Part of the task of program-
ming is to extend our programming language with notation for solving the problem at hand. The
levels of notation that we define should correspond to natural levels of abstraction in the problem
domain.

Historical Note: Alonzo Church’s λ-calculus gave a simple syntax, λ-notation, for expressing
functions. It is the direct precursor of OCaml’s fun-notation. It was soon shown that his system
was equivalent in computational power to Turing machines, and Church’s thesis states that this
defines precisely the set of functions that can be computed effectively.

The λ-calculus had a tremendous influence on the design of functional programming languages.
McCarthy’s Lisp was something of a false start; it interpreted variable binding incorrectly, an
error that stood for some 20 years. But in 1966, Peter Landin (of Queen Mary College, University
of London) sketched out the main features of functional languages.

8.10.1 Exercise 8.1

What does the following function do, and what are its uses?

In [157]: let sw f x y = f y x

Out[157]: val sw : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c = <fun>

8.10.2 Exercise 8.2

There are many ways of combining orderings. The lexicographic ordering uses two keys for
comparisons. It is specified by

(x′, y′) < (x, y) ⇐⇒ x′ < x ∨ (x′ = x ∧ y′ < y).

Write an OCaml function to lexicographically combine two orderings, supplied as functions. Ex-
plain how it allows function insort to sort a list of pairs.

8.10.3 Exercise 8.3

Without using map write a function map2 such that map2 f is equivalent to map (map f). The
obvious solution requires declaring two recursive functions. Try to get away with only one by
exploiting nested pattern-matching.

74

8.10.4 Exercise 8.4

The type 'a option, declared below, can be viewed as a type of lists having at most one element.
(It is typically used as an alternative to exceptions.) Declare an analogue of the function map for
type 'a option.

In [158]: type 'a option = None | Some of 'a

Out[158]: type 'a option = None | Some of 'a

8.10.5 Exercise 8.5

Recall the making change function of Lecture 4:

In [159]: let rec change till amt =
match till, amt with
| _ , 0 -> [[]]
| [] , _ -> []
| c::till , amt -> if amt < c then change till amt

else let rec allc = function
| [] -> []
| cs :: css -> (c::cs) :: allc css

in
allc (change (c::till) (amt - c)) @

change till amt

Out[159]: val change : int list -> int -> int list list = <fun>

Function allc applies the function ‘cons a c’ to every element of a list. Eliminate it by declaring a
curried cons function and applying map.

75

Chapter 9

Lecture 9: Sequences, or Lazy Lists

9.1 A Pipeline

Producer → Filter → · · · → Filter → Consumer

• Produce sequence of items
• Filter sequence in stages
• Consume results as needed
• Lazy lists join the stages together

Two types of program can be distinguished. A sequential program accepts a problem to solve,
processes for a while, and finally terminates with its result. A typical example is the huge nu-
merical simulations that are run on supercomputers. Most of our OCaml functions also fit this
model.

At the other extreme are reactive programs, whose job is to interact with the environment. They
communicate constantly during their operation and run for as long as is necessary. A typical
example is the software that controls many modern aircraft. Reactive programs often consist of
concurrent processes running at the same time and communicating with one another.

Concurrency is too difficult to consider in this course, but we can model simple pipelines such
as that shown above. The Producer represents one or more sources of data, which it outputs as a
stream. The Filter stages convert the input stream to an output stream, perhaps consuming several
input items to yield a single output item. The Consumer takes as many elements as necessary.

The Consumer drives the pipeline: nothing is computed except in response to its demand for an
additional datum. Execution of the Filter stages is interleaved as required for the computation to
go through. The programmer sets up the data dependencies but has no clear idea of what happens
when. We have the illusion of concurrent computation.

The Unix operating system provides similar ideas through its pipes that link processes together. In
OCaml, we can model pipelines using lazy lists.

9.2 Lazy Lists (or Streams)

• Lists of possibly infinite length

76

• Elements computed upon demand
• Avoids waste if there are many solutions
• Infinite values are a useful abstraction

In OCaml, we can implement laziness by delaying evaluation of the tail of the list.

Lazy lists have practical uses. Some algorithms, like making change, can yield many solutions
when only a few are required. Sometimes the original problem concerns infinite series: with lazy
lists, we can pretend they really exist!

We are now dealing with infinite (or at least unbounded) computations. A potentially infinite
source of data is processed one element at a time, upon demand. Such programs are harder to
understand than terminating ones and have more ways of going wrong.

Some purely functional languages, such as Haskell, use lazy evaluation everywhere. Even the
if-then-else construct can be a function, and all lists are lazy. In OCaml, we can declare a type of
lists such that evaluation of the tail does not occur until demanded. Delayed evaluation is weaker
than lazy evaluation, but it is good enough for our purposes and often the best compromise for
performance and memory usage.

The traditional word “stream” is reserved in OCaml parlance for input/output channels. Let us
call lazy lists sequences instead.

9.3 Lazy Lists in OCaml

• The empty tuple () and its type unit
• Delayed version of E is fun () -> E

In [160]: type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

Out[160]: type 'a seq = Nil | Cons of 'a * (unit -> 'a seq)

In [161]: let head (Cons (x, _)) = x

File "[161]", line 1, characters 9-26:
1 | let head (Cons (x, _)) = x

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[161]: val head : 'a seq -> 'a = <fun>

In [162]: let tail (Cons (_, xf)) = xf ()

File "[162]", line 1, characters 9-31:
1 | let tail (Cons (_, xf)) = xf ()

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

77

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[162]: val tail : 'a seq -> 'a seq = <fun>

Cons(x, xf) has head x and tail function x f

The primitive OCaml type unit has one element, which is written (). This element may be re-
garded as a 0-tuple, and unit as the nullary Cartesian product. (Think of the connection between
multiplication and the number 1.)

The empty tuple serves as a placeholder in situations where no information is required. It may:

• appear in a data structure. For example, a unit-valued dictionary represents a set of keys.
• be the argument of a function, where its effect is to delay evaluation.
• be the argument or result of a procedure. (see the Procedural Programming section)

The empty tuple, like all tuples, is a constructor and is allowed in patterns; for example: let f ()
= ...

In particular fun () → E is the function that takes an argument of type unit and returns the value
of E as its result. Expression E is not evaluated until the function is called, even though the only
possible argument is (). The function simply delays the evaluation of E.

9.4 The Infinite Sequence: k, k + 1, k + 2, . . .

In [163]: let rec from k = Cons (k, fun () -> from (k+1))

Out[163]: val from : int -> int seq = <fun>

In [164]: let it = from 1

Out[164]: val it : int seq = Cons (1, <fun>)

In [165]: let it = tail it

Out[165]: val it : int seq = Cons (2, <fun>)

In [166]: let it = tail it

Out[166]: val it : int seq = Cons (3, <fun>)

Function from constructs the infinite sequence of integers starting from k. Execution terminates
because of the fun enclosing the recursive call. OCaml displays the tail of a sequence as fun, which
stands for some function value. Each call to tail generates the next sequence element. We could
do this forever.

78

This example is of little practical value because the cost of computing a sequence element will be
dominated by that of creating the dummy function. Lazy lists tend to have high overheads.

9.5 Consuming a Sequence

In [167]: let rec get n s =
match n, s with
| 0, _ -> []
| n, Nil -> []
| n, Cons (x, xf) -> x :: get (n-1) (xf ())

Out[167]: val get : int -> 'a seq -> 'a list = <fun>

The above code gets the first n elements as a list. xf () forces evaluation.

The function get converts a sequence to a list. It takes the first n elements; it takes all of them if
n < 0, which can terminate only if the sequence is finite.

In the last line of get, the expression xf() calls the tail function, demanding evaluation of the next
element. This operation is called forcing the sequence.

9.6 Sample Evaluation

get(2, from 60)

get(2, Cons(6, fun () → from (6+ 1)))

6 :: get(1, from (6+ 1))

6 :: get(1, Cons (7, fun () → from (7+ 1)))

6 :: 7 :: get(0, Cons (8, fun () → from (8+ 1)))

6 :: 7 :: []
[6; 7]

Here we ask for two elements of the infinite sequence. In fact, three elements are computed: 6, 7
and 8. Our implementation is slightly too eager. A more complicated type declaration could avoid
this problem. Another problem is that if one repeatedly examines some particular list element
using forcing, that element is repeatedly evaluated. In a lazy programming language, the result of
the first evaluation would be stored for later reference. To get the same effect in OCaml requires
the use of references.

We should be grateful that the potentially infinite computation is kept finite. The tail of the original
sequence even contains the unevaluated expression 6+1.

9.7 Joining Two Sequences

In [168]: let rec appendq xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons(x, fun () -> appendq (xf ()) yq)

79

Out[168]: val appendq : 'a seq -> 'a seq -> 'a seq = <fun>

A more fair alternative:

In [169]: let rec interleave xq yq =
match xq with
| Nil -> yq
| Cons (x, xf) -> Cons (x, fun () -> interleave yq (xf ()))

Out[169]: val interleave : 'a seq -> 'a seq -> 'a seq = <fun>

Most list functions and functionals have analogues on sequences, but strange things can happen.
Can an infinite list be reversed?

Function appendq is precisely the same idea as append from the Lists lecture; it concatenates two
sequences. If the first argument is infinite, then appendq never gets to its second argument, which
is lost. Concatenation of infinite sequences is not terribly interesting.

The function interleave avoids this problem by exchanging the two arguments in each recursive
call. It combines the two lazy lists, losing no elements. Interleaving is the right way to combine
two potentially infinite information sources into one.

In both function declarations, observe that each xf () is enclosed within a fun() → Each force
is enclosed within a delay. This practice makes the functions lazy. A force not enclosed in a delay,
as in get above, runs the risk of evaluating the sequence in full.

9.8 Functionals for Lazy Lists

Filtering lazy lists:

In [170]: let rec filterq p = function
| Nil -> Nil
| Cons (x, xf) ->

if p x then
Cons (x, fun () -> filterq p (xf ()))

else
filterq p (xf ())

Out[170]: val filterq : ('a -> bool) -> 'a seq -> 'a seq = <fun>

The infinite sequence x, f (x), f (f (x)), . . .

In [171]: let rec iterates f x =
Cons (x, fun () -> iterates f (f x))

Out[171]: val iterates : ('a -> 'a) -> 'a -> 'a seq = <fun>

The functional filterq demands elements of xq until it finds one satisfying p. (Recall filter, the
analogous operation for ordinary lists.) It contains a force not protected by a delay. If xq is infinite
and contains no satisfactory element, then filtering runs forever.

80

The functional iterates generalises from. It creates the next element not by adding one but by
calling the function f.

9.9 Numerical Computations on Infinite Sequences

In [172]: let next a x = (a /. x +. x) /. 2.0

Out[172]: val next : float -> float -> float = <fun>

Close enough?

In [173]: let rec within eps = function
| Cons (x, xf) ->

match xf () with
| Cons (y, yf) ->

if abs_float (x -. y) <= eps then y
else within eps (Cons (y, yf))

File "[173]", lines 3-6, characters 4-38:
3 | ...match xf () with
4 | | Cons (y, yf) ->
5 | if abs_float (x -. y) <= eps then y
6 | else within eps (Cons (y, yf))
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil
File "[173]", lines 1-6, characters 21-38:
1 | ...function
2 | | Cons (x, xf) ->
3 | match xf () with
4 | | Cons (y, yf) ->
5 | if abs_float (x -. y) <= eps then y
6 | else within eps (Cons (y, yf))
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Nil

Out[173]: val within : float -> float seq -> float = <fun>

Square Roots:

In [174]: let root a = within 1e6 (iterates (next a) 1.0)

Out[174]: val root : float -> float = <fun>

The Newton-Raphson method is widely used for computing square roots. The infinite series
x0, (a/x0 + x0)/2, . . . converges rapidly to

√
a. The initial approximation, x0, is typically retrieved

81

from a table, and is accurate enough that only a few iterations of the method are necessary. Call-
ing iterates (next a) x0 generates the infinite series of approximations to the square root of a
using the Newton-Raphson method. To compute

√
2, the resulting series begins 1, 1.5, 1.41667,

1.4142157, 1.414213562, . . . , and this last figure is already accurate to 10 significant digits!

Function within searches down the lazy list for two points whose difference is less than eps. It
tests their absolute difference. Relative difference and other “close enough” tests can be coded.
Such components can be used to implement other numerical functions directly as functions over
sequences. The point is to build programs from small, interchangeable parts.

Function root uses within, iterates and next to to apply Newton-Raphson with a tolerance of
10−6 and a (poor) initial approximation of 1.0.

This treatment of numerical computation has received some attention in the research literature; a
recurring example is Richardson extrapolation.

9.9.1 Exercise 9.1

Code an analogue of map for sequences.

9.9.2 Exercise 9.2

Consider the list function concat, which concatenates a list of lists to form a single list. Can it be
generalised to concatenate a sequence of sequences? What can go wrong?

In [175]: let rec concat = function
| [] -> []
| l::ls -> l @ concat ls

Out[175]: val concat : 'a list list -> 'a list = <fun>

9.9.3 Exercise 9.3

Code a function to make change using lazy lists, delivering the sequence of all possible ways
of making change. Using sequences allows us to compute solutions one at a time when there
exists an astronomical number. Represent lists of coins using ordinary lists. (Hint: to benefit from
laziness you may need to pass around the sequence of alternative solutions as a function of type
unit -> (int list) seq.)

9.9.4 Exercise 9.4

A lazy binary tree is either empty or is a branch containing a label and two lazy binary trees, pos-
sibly to infinite depth. Present an OCaml datatype to represent lazy binary trees, along with a
function that accepts a lazy binary tree and produces a lazy list that contains all of the tree’s labels.
(Taken from the exam question 2008 Paper 1 Question 5.)

9.9.5 Exercise 9.5

Code the lazy list whose elements are all ordinary lists of zeroes and ones, namely []; [0]; [1];
[0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0];. . . . (Taken from the exam question 2003 Paper

82

1 Question 5.)

9.9.6 Exercise 9.6

(Continuing the previous exercise.) A palindrome is a list that equals its own reverse. Code the
lazy list whose elements are all palindromes of 0s and 1s, namely []; [0]; [1]; [0; 0]; [0;
0; 0]; [0; 1; 0]; [1; 1]; [1; 0; 1]; [1; 1; 1]; [0; 0; 0; 0];, You may take the
reversal function List.rev as given.

83

Chapter 10

Lecture 10: Queues and Search Strategies

10.1 Breadth-First v Depth-First Tree Traversal

• binary trees as decision trees
• look for solution nodes

– Depth-first: search one subtree in full before moving on
– Breadth-first: search all nodes at level k before moving to k + 1

• finds all solutions — nearest first!

Preorder, inorder and postorder tree traversals all have something in common: they are depth-
first. At each node, the left subtree is entirely traversed before the right subtree. Depth-first
traversals are easy to code and can be efficient, but they are ill-suited for some problems.

Suppose the tree represents the possible moves in a puzzle, and the purpose of the traversal is to
search for a node containing a solution. Then a depth-first traversal may find one solution node
deep in the left subtree, when another solution is at the very top of the right subtree. Often we
want the shortest path to a solution.

Suppose the tree is infinite or simply extremely large. Depth-first search is almost useless with such
trees, for if the left subtree is infinite then the search will never reach the right subtree. OCaml can
represent infinite trees by the means discussed in the lecture on laziness. Another tree representa-
tion (suitable for solving solitaire, for example) is by a function next : pos -> pos list, which
maps a board position to a list of the positions possible after the next move. For simplicity, the
examples below use the OCaml datatype tree, which has only finite trees.

A breadth-first traversal explores the nodes horizontally rather than vertically. When visiting a
node, it does not traverse the subtrees until it has visited all other nodes at the current depth. This
is easily implemented by keeping a list of trees to visit. Initially, this list consists of one element:
the entire tree. Each iteration removes a tree from the head of the list and adds its subtrees after
the end of the list.

10.2 Breadth-First Tree Traversal — Using Append

In [176]: let rec nbreadth = function
| [] -> []

84

| Lf :: ts -> nbreadth ts
| Br (v, t, u) :: ts ->

v :: nbreadth (ts @ [t; u])

Out[176]: val nbreadth : 'a tree list -> 'a list = <fun>

Keeps an enormous queue of nodes of search, and is a wasteful use of append.

Breadth-first search can be inefficient, this naive implementation especially so. When the search is
at depth d of the tree, the list contains all the remaining trees at depth d, followed by the subtrees
(all at depth d + 1) of the trees that have already been visited. At depth 10, the list could already
contain 1024 elements. It requires a lot of space, and aggravates this with a gross misuse of append.
Evaluating ts@[t, u] copies the long list ts just to insert two elements.

10.3 An Abstract Data Type: Queues

• qempty is the empty queue
• qnull tests whether a queue is empty
• qhd returns the element at the head of a queue
• deq discards the element at the head of a queue
• enq adds an element at the end of a queue

Breadth-first search becomes much faster if we replace the lists by queues. A queue represents a
sequence, allowing elements to be taken from the head and added to the tail. This is a First-In-
First-Out (FIFO) discipline: the item next to be removed is the one that has been in the queue for
the longest time. Lists can implement queues, but append is a poor means of adding elements to
the tail.

Our functional arrays are suitable, provided we augment them with a function to delete the first
array element. (See ML for the Working Programmer page 156.) Each operation would take O(log n)
time for a queue of length n.

We shall describe a representation of queues that is purely functional, based upon lists, and effi-
cient. Operations take O(1) time when “amortized”: averaged over the lifetime of a queue.

A conventional programming technique is to represent a queue by an array. Two indices point
to the front and back of the queue, which may wrap around the end of the array. The coding is
somewhat tricky. Worse, the length of the queue must be given a fixed upper bound.

10.4 Efficient Functional Queues: Idea

• Represent the queue x1 x2 . . . xm yn . . . y1 by any pair of lists

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

• Add new items to the rear list
• Remove items from front list and if empty move rear to front
• Amortized time per operation is O(1)

85

Queues require efficient access at both ends: at the front, for removal, and at the back, for insertion.
Ideally, access should take constant time, O(1). It may appear that lists cannot provide such access.
If enq(q, x) performs q@[x], then this operation will be O(n). We could represent queues by
reversed lists, implementing enq(q, x) by x::q, but then the deq and qhd operations would be
O(n). Linear time is intolerable: a series of n queue operations could then require O(n2) time.

The solution is to represent a queue by a pair of lists, where

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

represents the queue x1x2 . . . xmyn . . . y1.

The front part of the queue is stored in order, and the rear part is stored in reverse order. The
enq operation adds elements to the rear part using cons, since this list is reversed; thus, enq takes
constant time. The deq and qhd operations look at the front part, which normally takes constant
time, since this list is stored in order. But sometimes deq removes the last element from the front
part; when this happens, it reverses the rear part, which becomes the new front part.

Amortized time refers to the cost per operation averaged over the lifetime of any complete execu-
tion. Even for the worst possible execution, the average cost per operation turns out to be constant;
see the analysis below.

10.5 Efficient Functional Queues: Code

In [177]: type 'a queue =
| Q of 'a list * 'a list

Out[177]: type 'a queue = Q of 'a list * 'a list

In [178]: let norm = function
| Q ([], tls) -> Q (List.rev tls, [])
| q -> q

Out[178]: val norm : 'a queue -> 'a queue = <fun>

In [179]: let qnull = function
| Q ([], []) -> true
| _ -> false

Out[179]: val qnull : 'a queue -> bool = <fun>

In [180]: let enq (Q (hds, tls)) x = norm (Q (hds, x::tls))

Out[180]: val enq : 'a queue -> 'a -> 'a queue = <fun>

In [181]: exception Empty

Out[181]: exception Empty

86

In [182]: let deq = function
| Q (x::hds, tls) -> norm (Q (hds, tls))
| _ -> raise Empty

Out[182]: val deq : 'a queue -> 'a queue = <fun>

In [183]: let qempty = Q ([], [])

Out[183]: val qempty : 'a queue = Q ([], [])

In [184]: let qhd = function
| Q (x::_, _) -> x
| _ -> raise Empty

Out[184]: val qhd : 'a queue -> 'a = <fun>

The datatype of queues prevents confusion with other pairs of lists. The empty queue has both
parts empty.

The function norm puts a queue into normal form, ensuring that the front part is never empty
unless the entire queue is empty. Functions deq and enq call norm to normalise their result.

Because queues are in normal form, their head is certain to be in their front part, so qhd looks
there.

Let us analyse the cost of an execution comprising (in any possible order) n enq operations and n
deq operations, starting with an empty queue. Each enq operation will perform one cons, adding
an element to the rear part. Since the final queue must be empty, each element of the rear part gets
transferred to the front part. The corresponding reversals perform one cons per element. Thus,
the total cost of the series of queue operations is 2n cons operations, an average of 2 per operation.
The amortized time is O(1).

There is a catch. The conses need not be distributed evenly; reversing a long list could take up
to n − 1 of them. Unpredictable delays make the approach unsuitable for real-time programming
where deadlines must be met.

10.6 Breadth-First Tree Traversal — Using Queues

In [185]: let rec breadth q =
if qnull q then []
else

match qhd q with
| Lf -> breadth (deq q)
| Br (v, t, u) -> v :: breadth (enq (enq (deq q) t) u)

Out[185]: val breadth : 'a tree queue -> 'a list = <fun>

This function implements the same algorithm as nbreadth but uses a different data structure. It
represents queues using type queue instead of type list.

87

To compare their efficiency, I applied both functions to the full binary tree of depth 12, which con-
tains 4095 labels. The function nbreadth took 30 seconds while breadth took only 0.15 seconds:
faster by a factor of 200.

For larger trees, the speedup would be greater. Choosing the right data structure pays hand-
somely.

10.7 Iterative deepening: Another Exhaustive Search

• Breadth-first search examines O(bd) nodes:

1 + b + · · ·+ bd =
bd+1 − 1

b − 1
b = branching factor
d = depth

• Recompute nodes at depth d instead of storing them
• Time factor is b/(b − 1) if b > 1; complexity is still O(bd)
• Space required at depth d drops from bd to d

Breadth-first search is not practical for infinite trees: it uses too much space. Large parts of the
tree have to be stored. Consider the slightly more general problem of searching trees whose
branching factor is b (for binary trees, b = 2). Then breadth-first search to depth d examines
(bd+1 − 1)/(b − 1) nodes, which is O(bd), ignoring the constant factor of b/(b − 1). Since all
nodes that are examined are also stored, the space and time requirements are both O(bd).

Depth-first iterative deepening combines the space efficiency of depth-first with the “nearest-first”
property of breadth-first search. It performs repeated depth-first searches with increasing depth
bounds, each time discarding the result of the previous search. Thus it searches to depth 1, then
to depth 2, and so on until it finds a solution. We can afford to discard previous results because
the number of nodes is growing exponentially. There are bd+1 nodes at level d + 1; if b ≥ 2, this
number actually exceeds the total number of nodes of all previous levels put together, namely
(bd+1 − 1)/(b − 1).

Korf shows that the time needed for iterative deepening to reach depth d is only b/(b − 1) times
that for breadth-first search, if b > 1. This is a constant factor; both algorithms have the same
time complexity, O(bd). In typical applications where b ≥ 2 the extra factor of b/(b − 1) is quite
tolerable. The reduction in the space requirement is exponential, from O(bd) for breadth-first to
O(d) for iterative deepening. Of course, this assumes that the tree itself is not stored in memory.

10.8 Another Abstract Data Type: Stacks

• empty is the empty stack
• null tests whether a stack is empty
• top returns the element at the top of a stack
• pop discards the element at the top of a stack
• push adds an element at the top of a stack

A stack is a sequence such that items can be added or removed from the head only. A stack obeys
a Last-In-First-Out (LIFO) discipline: the item next to be removed is the one that has been in the
queue for the shortest time. Lists can easily implement stacks because both cons and hd affect the

88

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.288

head. But unlike lists, stacks are often regarded as an imperative data structure: the effect of push
or pop is to change an existing stack, not return a new one.

In conventional programming languages, a stack is often implemented by storing the elements
in an array, using a variable (the “stack pointer”) to count them. Most language processors keep
track of recursive function calls using an internal stack.

10.9 A Survey of Search Methods

• Depth-first: use a stack (efficient but incomplete)
• Breadth-first: use a queue (uses too much space!)
• Iterative deepening: use depth-first to get benefits of breadth-first (trades time for space)
• Best-first: use a priority queue (heuristic search)

The data structure determines the search!

Search procedures can be classified by the data structure used to store pending subtrees. Depth-
first search stores them on a stack, which is implicit in functions like inorder, but can be made
explicit. Breadth-first search stores such nodes in a queue.

An important variation is to store the nodes in a priority queue, which is an ordered sequence. The
priority queue applies some sort of ranking function to the nodes, placing higher-ranked nodes
before lower-ranked ones. The ranking function typically estimates the distance from the node to
a solution. If the estimate is good, the solution is located swiftly. This method is called best-first
search.

The priority queue can be kept as a sorted list, although this is slow. Binary search trees would be
much better on average, and fancier data structures improve matters further.

10.9.1 Exercise 10.1

Suppose that we have an implementation of queues, based on binary trees, such that each opera-
tion takes logarithmic time in the worst case. Outline the advantages and drawbacks of such an
implementation compared with one presented above.

10.9.2 Exercise 10.2

The traditional way to implement queues uses a fixed-length array. Two indices into the array
indicate the start and end of the queue, which wraps around from the end of the array to the start.
How appropriate is such a data structure for implementing breadth-first search?

10.9.3 Exercise 10.3

Write a version of the function breadth using a nested let construction rather than match.

10.9.4 Exercise 10.4

Iterative deepening is inappropriate if b ≈ 1, where b is the branching factor. What search strategy
is appropriate in this case?

89

10.9.5 Exercise 10.5

Consider the following OCaml function.

In [186]: let next n = [2 * n; 2 * n + 1]

Out[186]: val next : int -> int list = <fun>

If we regard it as representing a tree, where the subtrees are computed from the current label,
what tree does next 1 represent?

90

Chapter 11

Lecture 11: Elements of Procedural
Programming

11.1 Procedural Programming

• Procedural programs can change the machine state.
• They can interact with its environment
• They use control structures like branching, iteration and procedures.

They use data abstractions of the computer’s memory: - references to memory cells - arrays that are
blocks of memory cells - linked structures such as linked lists

Procedural programming is programming in the traditional sense of the word. A program state
is repeatedly transformed by the execution of commands or statements. A state change might be
local to the machine and consist of updating a variable or array. A state change might consist
of sending data to the outside world. Even reading data counts as a state change, since this act
normally removes the data from the environment.

Procedural programming languages provide primitive commands and control structures for com-
bining them. The primitive commands include assignment for updating variables, and various
input/output commands for communication. Control structures include if and match constructs
for conditional execution, and repetitive constructs such as while. Programmers can package up
their own commands as procedures taking arguments. The need for such “subroutines” was evi-
dent from the earliest days; they represent one of the first examples of abstraction in programming
languages.

OCaml makes no distinction between commands and expressions. OCaml provides built-in ‘func-
tions’ to perform assignment and communication, and these can be used in the traditional (proce-
dural) style. OCaml programmers often follow a functional style for most internal computations
and use imperative features mainly for communication with the outside world.

11.2 OCaml Primitives for References

Syntax Effect

ref E create a reference with initial contents = value of E

91

Syntax Effect

!P return current contents of reference P
P := E update contents of P to value of E

The above text presents the OCaml primitives, but most languages have analogues of them, often
heavily disguised. We need a means of creating references (or allocating storage), getting at the
current contents of a reference cell, and updating that cell.

The function ref creates references (also called “locations”). Calling ref allocates a new location
in memory. Initially, this location holds the value given by expression E.

The function !, when applied to a reference, returns its contents. This operation is called derefer-
encing. Clearly ! is not a mathematical function; its result depends upon the store.

The assignment P:=E evaluates expression P, which must return a reference p, and E. It stores at
address p the value of E. Syntactically, := is a function and P:=E is an expression, even though it
updates the store. Like many functions that change the state, it returns the value () of type unit.

If τ is some OCaml type, then τ ref is the type of references to cells that can hold values of τ.
Please do not confuse the type ref with the function ref. This table of the primitive functions and
their types might be useful:

Syntax OCaml Type

ref 'a -> 'a ref
! 'a ref -> 'a
:= 'a ref -> 'a -> unit

11.3 Trying Out References

In [187]: let p = ref 5 (* create a reference *)

Out[187]: val p : int ref = {contents = 5}

In [188]: p := !p + 1 (* p now holds value 6 *)

Out[188]: - : unit = ()

In [189]: let ps = [ref 77; p]

Out[189]: val ps : int ref list = [{contents = 77}; {contents = 6}]

In [190]: List.hd ps := 3

Out[190]: - : unit = ()

In [191]: ps

92

Out[191]: - : int ref list = [{contents = 3}; {contents = 6}]

The first line declares p to hold a reference to an integer, initially 5. Its type is int ref, not just
int, so it admits assignment. Assignment never changes let bindings: they are immutable. The
identifier p will always denote the reference mentioned in its declaration unless superseded by a
new usage of p. Only the contents of the reference is mutable.

OCaml displays a reference value as {contents=v}, where value v is the contents. This notation is
readable but gives us no way of telling whether two references holding the same value are actually
the same reference. To display a reference as a machine address has obvious drawbacks!

In the first assignment, the expression !p yields the reference’s current contents, namely 5. The
assignment changes the contents of p to 6. Most languages do not have an explicit dereferencing
operator (like !) because of its inconvenience. Instead, by convention, occurrences of the reference
on the left-hand side of the := denote locations and those on the right-hand side denote the contents.
A special ‘address of’ operator may be available to override the convention and make a reference
on the right-hand side to denote a location. Logically this is a mess, but it makes programs shorter.

The list ps is declared to hold a new reference (initially containing 77) as well as p. Then the new
reference is updated to hold 3. The assignment to hd ps does not update ps, only the contents of
a reference in that list.

11.4 Commands: Expressions with Effects

• Basic commands update references, write to files, etc.
• C1; . . . ; Cn causes a series of expressions to be evaluated and returns the value of Cn.
• A typical command returns the empty tuple: ()
• if B then C1 else C2 behaves like the traditional control structure if C1 and C2 have effects.
• Other OCaml constructs behave naturally with commands, including match expressions and

recursive functions.

We use the term command informally to refer to an expression that has an effect on the state. All
expressions denote some value, but they can return (), which conveys no actual information.

We need a way to execute one command after another. The construct C1; . . . ; Cn evaluates the
expressions C1 to Cn in the order given and returns the value of Cn. The values of the other
expressions are discarded; their only purpose is to change the state.

Commands may be used with if and match much as in conventional languages. OCaml functions
play the role of procedures.

Other languages that combine the functional and imperative programming paradigms include
Lisp (and its dialect Scheme), Scala, and even a systems programming language, BLISS (now long
extinct).

11.5 Iteration: the while command

In [192]: let tlopt = function
| [] -> None
| _::xs -> Some xs

93

Out[192]: val tlopt : 'a list -> 'a list option = <fun>

In [193]: let length xs =
let lp = ref xs in (* list of uncounted elements *)
let np = ref 0 in (* accumulated count *)
let fin = ref false in
while not !fin do

match tlopt !lp with
| None -> fin := true
| Some xs ->

lp := xs;
np := 1 + !np

done;
!np (* the final count is returned *)

Out[193]: val length : 'a list -> int = <fun>

Once we can change the state, we need to do so repeatedly. Recursion can serve this purpose, but
having to declare a procedure for every loop is clumsy, and compilers for conventional languages
seldom exploit tail-recursion.

Early programming languages provided little support for repetition. The programmer had to set
up loops using goto commands, exiting the loop using another goto controlled by an if. Modern
languages provide a confusing jumble of looping constructs, the most fundamental of which is
while B do C. The boolean expression B is evaluated, and if true, command C is executed and the
command repeats. If B evaluates to false then the while command terminates, perhaps without
executing C even once.

OCaml’s main looping construct is while, which returns the value (). The function length de-
clares references to hold the list under examination (lp) and number of elements counted so far
(np) as well as whether the end of the list has been reached (the boolean reference fin). While the
list is non-empty, we skip over one more element (by setting it to its tail) and count that element.

The body of the while loop first checks to see if the end of the list has been reached, in which
case it sets the fin variable to true. If there is a tail value, then two assignments are executed in
sequence. The lp reference is set to the tail of the list, and the np reference integer is incremented
by one. When the while loop terminates due to the fin variable being set to true, the expression
!np returns the computed length as the function’s result.

11.6 Private, Persistent References

In [194]: exception TooMuch of int

Out[194]: exception TooMuch of int

In [195]: let makeAccount initBalance =
let balance = ref initBalance in
let withdraw amt =

94

if amt > !balance then
raise (TooMuch (amt - !balance))

else begin
balance := !balance - amt;
!balance

end
in
withdraw

Out[195]: val makeAccount : int -> int -> int = <fun>

As you may have noticed, OCaml’s programming style looks clumsy compared with that of lan-
guages like C. OCaml omits the defaults and abbreviations they provide to shorten programs.
However, OCaml’s explicitness makes it ideal for teaching the fine points of references and ar-
rays. OCaml’s references are more flexible than those found in other languages.

The function makeAccount models a bank. Calling the function with a specified initial balance cre-
ates a new reference balance) to maintain the account balance and returns a function (withdraw)
having sole access to that reference. Calling withdraw reduces the balance by the specified amount
and returns the new balance. You can pay money in by withdrawing a negative amount. The if-
construct prevents the account from going overdrawn, raising an exception.

Look at the (E1; E2) construct in the else part above. The first expression updates the account
balance and returns the trivial value (). The second expression, !balance, returns the current
balance but does not return the reference itself: that would allow unauthorised updates.

This example is based on one by Dr A C Norman.

11.7 Two Bank Accounts

In [196]: let student = makeAccount 500

Out[196]: val student : int -> int = <fun>

In [197]: let director = makeAccount 4000000;

Out[197]: val director : int -> int = <fun>

In [198]: student 5 (* coach fare *)

Out[198]: - : int = 495

In [199]: director 150000 (* Tesla *)

Out[199]: - : int = 3850000

In [200]: student 500 (* oh oh *)

95

Exception: TooMuch 5.
Raised at file "[195]", line 5, characters 13-39
Called from file "toplevel/toploop.ml", line 208, characters 17-27

Each call to makeAccount returns a copy of withdraw holding a fresh instance of the reference
balance. As with a real bank pass-book, there is no access to the account balance except via
the corresponding withdraw function. If that function is discarded, the reference cell becomes
unreachable; the computer will eventually reclaim it, just as banks close down dormant accounts.

Here we see two people managing their accounts. For better or worse, neither can take money
from the other.

We could generalise makeAccount to return several functions that jointly manage information held
in shared references. The functions might be packaged using OCaml records, which are not dis-
cussed in this course. Most procedural languages do not properly support the concept of private
references, although object-oriented languages take them as a basic theme.

11.8 OCaml Primitives for Arrays

In [201]: [|"a"; "b"; "c"|] (* allocate a fresh string array *)

Out[201]: - : string array = [|"a"; "b"; "c"|]

In [202]: Array.make 3 'a' (* array of size 10 with cell containing 'a' *)

Out[202]: - : char array = [|'a'; 'a'; 'a'|]

In [203]: let aa = Array.init 5 (fun i -> i * 10) (* array of size 5 initialised to (fun i) *)

Out[203]: val aa : int array = [|0; 10; 20; 30; 40|]

In [204]: Array.get aa 3 (* retrieve the 4th cell in the array *)

Out[204]: - : int = 30

In [205]: Array.set aa 3 42 (* set the 4th cell's value to 42 *)

Out[205]: - : unit = ()

There are many other array operations in the Array module in the OCaml standard library.

In [206]: Array.make

Out[206]: - : int -> 'a -> 'a array = <fun>

In [207]: Array.init

96

Out[207]: - : int -> (int -> 'a) -> 'a array = <fun>

In [208]: Array.get

Out[208]: - : 'a array -> int -> 'a = <fun>

In [209]: Array.set

Out[209]: - : 'a array -> int -> 'a -> unit = <fun>

OCaml arrays are like references that hold several elements instead of one. The elements of an
n-element array are designated by the integers from 0 to n − 1. The ith array element is usually
written A.(i). If τ is a type then τ array is the type of arrays (of any size) with elements from τ.

Calling Array.init n f creates an array of the size specified in n by function f . Initially, element
A.(i) holds the value of f (i) for i = 0, . . . ,~n − 1. Like ref, it allocates mutable storage to hold the
specified values.

Calling Array.get A i returns the contents of A.(i).

Calling Array.set A i E modifies the array A by storing the value of E as the new contents of
A[i]; it returns () as its value.

OCaml’s arrays are much safer than C’s. In C, an array is nothing more than an address indicating
the start of a storage area. Nothing indicates the size of the area. Therefore C programs are vul-
nerable to buffer overrun attacks: an attacker sends more data than the receiving program expects,
overrunning the area of storage set aside to hold it. The attack eventually overwrites the program
itself, replacing it with code controlled by the attacker.

11.9 Array Examples

In the following session, the identifier ar is bound to an array of 20 elements, which are initially
set to the squares of their subscripts. The array’s third element (which actually has subscript 2) is
inspected and found to be four. The second call to Array.get supplies a subscript that is out of
range, so OCaml rejects it.

In [210]: let ar = Array.init 20 (fun i -> i * i)

Out[210]: val ar : int array =
[|0; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121; 144; 169; 196; 225; 256;

289; 324; 361|]

In [211]: Array.get ar 2

Out[211]: - : int = 4

In [212]: Array.get ar 20

Exception: Invalid_argument "index out of bounds".

97

Raised by primitive operation at unknown location
Called from file "toplevel/toploop.ml", line 208, characters 17-27

In [213]: Array.set ar 2 33; ar

Out[213]: - : int array =
[|0; 1; 33; 9; 16; 25; 36; 49; 64; 81; 100; 121; 144; 169; 196; 225; 256;

289; 324; 361|]

By calling Array.set, we then modify the element with subscript 2. Note however that we cannot
modify the array’s length. If we outgrow the array, we have to create a new one, copy the data
into it, and then forget the old array. Typically the new array would be double the size of the old
one, so that the cost of copying is insignificant.

OCaml provides numerous operators for modifying, computing over and searching in arrays.
Many are analogous to functions on lists. For example, Array.exists takes a boolean-valued
function and returns true if an array element satisfies it.

In [214]: Array.exists (fun i -> i > 200) ar

Out[214]: - : bool = true

In [215]: Array.exists (fun i -> i < 0) ar

Out[215]: - : bool = false

11.10 References: OCaml vs conventional languages

• We must write !p to get the contents of p
• We write just p for the address of p
• We can store private reference cells (like balance) in functions—analogous to elements of

object-oriented programming
• OCaml’s assignment syntax is V := E instead of V = E
• OCaml has few control structures: while, match, if and for (the latter is not covered in this

course)
• OCaml has syntax for updating an array via the a.(i) <- v syntax which is the same as

Array.set a i v.

Conventional syntax for variables and assignments has hardly changed since Fortran, the first
high-level language. In conventional languages, virtually all variables can be updated. We declare
something like p: int, mentioning no reference type even if the language provides them. If we
do not specify an initial value, we may get whatever bits were previously at that address. Illegal
values arising from uninitialised variables can cause errors that are almost impossible to diagnose.

Dereferencing operators (like OCaml’s !) are especially unpopular, because they clutter the pro-
gram text. Virtually all programming languages make dereferencing implicit (that is, automatic).

98

It is generally accepted these days that a two-dimensional array A is nothing but an array of
arrays. An assignment to such an array is typically written something like A[i, j]:=x; in C, the
syntax is A[i][j] = x. Higher dimensions are treated analogously. The corresponding OCaml
code can either declare an array of arrays, or use the A.(i) syntax to calculate the linear offset into
a single array.

You can use the constructs we have learnt to easily create linked (mutable) lists as an alternative
to arrays.

In [216]: type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref

Out[216]: type 'a mlist = Nil | Cons of 'a * 'a mlist ref

It is worth mentioning that OCaml’s references fully suffice for coding the sort of linked data
structures taught in algorithms courses, and is illustrated in the figure above. The programming
style is a little different from the usual, but the principles are the same. OCaml also provides
comprehensive input/output primitives for various types of file and operating system.

OCaml’s system of modules include structures, which can be seen as encapsulated groups of dec-
larations, and signatures, which are specifications of structures listing the name and type of each
component. Finally, there are functors, which are analogous to functions that combine a number
of argument structures, and which can be used to plug program components together. These
primitives are useful for managing large programming projects.

11.10.1 Exercise 11.1

Comment, with examples, on the differences between an int ref list and an int list ref.

11.10.2 Exercise 11.2

Write a version of function power (Lecture 1) using while instead of recursion.

11.10.3 Exercise 11.3

What is the effect of while C1; B do C2 done ?

11.10.4 Exercise 11.4

Write a function to exchange the values of two references, xr and yr.

11.10.5 Exercise 11.5

Arrays of multiple dimensions are represented in OCaml by arrays of arrays. Write functions to
(a) create an n × n identity matrix, given n, and (b) to transpose an m × n matrix. Identity matrices

99

have the following form:
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

100

	Lecture 1: Introduction to Programming
	Basic Concepts in Computer Science
	Goals of Programming
	Why Program in OCaml?
	A first session with OCaml
	Raising a Number to a Power
	Efficiently Raising a Number to a Power

	Lecture 2: Recursion and Efficiency
	Expression Evaluation
	Summing the first n integers
	Iteratively summing the first n integers
	Recursion vs Iteration
	Silly Summing the First n Integers
	Comparing Algorithms: O Notation
	Simple Facts About O Notation
	Common Complexity Classes
	Sample costs in O notation
	Some Simple Recurrence Relations

	Lecture 3: Lists
	The List Primitives
	Getting at the Head and Tail
	Computing the Length of a List
	Efficiently Computing the Length of a List
	Append: List Concatenation
	Reversing a List in O(n^2)
	Reversing a List in O(n)
	Lists, Strings and Characters

	Lecture 4: More on Lists
	List Utilities: take and drop
	Linear Search
	Equality Tests
	Building a List of Pairs
	Building a Pair of Results
	An Application: Making Change
	All Ways of Making Change
	All Ways of Making Change — Faster!

	Lecture 5: Sorting
	How Fast Can We Sort?
	Insertion Sort
	Quicksort: The Idea
	Quicksort: The Code
	Append-Free Quicksort
	Merging Two Lists
	Top-down Merge sort
	Summary of Sorting Algorithms

	Lecture 6: Datatypes and Trees
	An Enumeration Type
	Declaring a Function on Vehicles
	A Datatype whose Constructors have Arguments
	A Finer Wheel Computation
	Error Handling: Exceptions
	Exceptions in OCaml
	Making Change with Exceptions
	Making Change: A Trace
	Binary Trees, a Recursive Datatype
	Basic Properties of Binary Trees

	Lecture 7: Dictionaries and Functional Arrays
	Dictionaries
	Binary Search Trees
	Lookup: Seeks Left or Right
	Update
	Aside: Traversing Trees (3 Methods)
	Efficiently Traversing Trees
	Arrays
	Functional Arrays as Binary Trees
	The Lookup Function
	The Update Function

	Lecture 8: Functions as Values
	Functions Without Names
	Curried Functions
	Shorthand for Curried Functions
	Partial Application: A Curried Insertion Sort
	map: the ``Apply to All'' Function
	Example: Matrix Transpose
	Review of Matrix Multiplication
	Matrix Multiplication in OCaml
	List Functionals for Predicates
	Applications of the Predicate Functionals

	Lecture 9: Sequences, or Lazy Lists
	A Pipeline
	Lazy Lists (or Streams)
	Lazy Lists in OCaml
	The Infinite Sequence: k, k+1, k+2, …
	Consuming a Sequence
	Sample Evaluation
	Joining Two Sequences
	Functionals for Lazy Lists
	Numerical Computations on Infinite Sequences

	Lecture 10: Queues and Search Strategies
	Breadth-First v Depth-First Tree Traversal
	Breadth-First Tree Traversal — Using Append
	An Abstract Data Type: Queues
	Efficient Functional Queues: Idea
	Efficient Functional Queues: Code
	Breadth-First Tree Traversal — Using Queues
	Iterative deepening: Another Exhaustive Search
	Another Abstract Data Type: Stacks
	A Survey of Search Methods

	Lecture 11: Elements of Procedural Programming
	Procedural Programming
	OCaml Primitives for References
	Trying Out References
	Commands: Expressions with Effects
	Iteration: the while command
	Private, Persistent References
	Two Bank Accounts
	OCaml Primitives for Arrays
	Array Examples
	References: OCaml vs conventional languages

