Geometry Processing Dr Cengiz Öztireli

and the second sec

Children (1981)

Sources of Geometry

Acquisition from the real world

Modeling applications

Digitizing real world objects

• 3D Scanning

Touch Probes

JNIVERSITY OF CAMBRIDGE

Optical Scanning

- + Precise + Fast
- Small objects Glossy objects

Active

Passive

• Optical Scanning – Active Systems

LIDAR

Measures the time it takes the laser beam to hit the object and come back

Triangulation Laser

Projected laser beam is photographed, giving the distance of the pattern

• Optical Scanning – Passive Systems

- Registration
 - Bringing scans into a common coordinate frame

Registration

Iterative Closest Point Algorithms

Registration

CAMBRIDGE

Feature-based Methods

- Pre-processing
 - Cleaning, repairing, resampling

- Pre-processing
 - Sampling for accurate reconstructions

- Reconstruction
 - Mathematical representation for a shape

Reconstruction

Connect-the-points Methods

- + Theoretical error bounds
- Expensive
- Not robust to noise

Approximation-based Methods

- + Efficient to compute
- + Robust to noise
- No theoretical error bounds

- Approximating an implicit function
 - $f: \mathbb{R}^3 \to \mathbb{R}$ with value > 0 outside the shape and < 0 inside

- Approximating an implicit function
 - $f: \mathbb{R}^3 \to \mathbb{R}$ with value > 0 outside the shape and < 0 inside

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$
extract zero set

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \ (u,v) \in \mathbb{R}^2$$

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \quad (u,v) \in \mathbb{R}^2$$
$$\mathbf{p}_u = \frac{\partial \mathbf{p}(u,v)}{\partial u}, \quad \mathbf{p}_v = \frac{\partial \mathbf{p}(u,v)}{\partial v}$$
$$\mathbf{I} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \mathbf{p}_u^T \mathbf{p}_u & \mathbf{p}_u^T \mathbf{p}_v \\ \mathbf{p}_u^T \mathbf{p}_v & \mathbf{p}_v^T \mathbf{p}_v \end{pmatrix}$$

Area distortion: $dA = \sqrt{EG - F^2} \, du dv$

Conformal parametrization (angle preservation)

$$\mathbf{I} = \begin{pmatrix} \mathbf{p}_u^T \mathbf{p}_u & \mathbf{p}_u^T \mathbf{p}_v \\ \mathbf{p}_u^T \mathbf{p}_v & \mathbf{p}_v^T \mathbf{p}_v \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

Modeling tools

Sculpting

CAD/CAM

Procedural

Interactive & sketch-based interfaces

Deformations

More structure

• Cutting & fracturing

Smoothing & filtering

Compression & Simplification

