3. More on numbers

3.1. Basic exercises
1. Calculate the set CD(666, 330) of common divisors of 666 and 330.
2. Find the gcd of 21212121 and 12121212.
3. Prove that for all positive integers \(m \) and \(n \), and integers \(k \) and \(l \),
\[
\gcd(m, n) \mid (k \cdot m + l \cdot n)
\]
4. Find integers \(x \) and \(y \) such that \(x \cdot 30 + y \cdot 22 = \gcd(30, 22) \). Now find integers \(x' \) and \(y' \) with \(0 \leq y' < 30 \) such that \(x' \cdot 30 + y' \cdot 22 = \gcd(30, 22) \).
5. Prove that for all positive integers \(m \) and \(n \), there exists integers \(k \) and \(l \) such that \(k \cdot m + l \cdot n = 1 \) iff \(\gcd(m, n) = 1 \).
6. Prove that for all integers \(n \) and primes \(p \), if \(n^2 \equiv 1 \pmod{p} \) then either \(n \equiv 1 \pmod{p} \) or \(n \equiv -1 \pmod{p} \).

3.2. Core exercises
1. Prove that for all positive integers \(m \) and \(n \), \(\gcd(m, n) = m \) iff \(m \mid n \).
2. Let \(m \) and \(n \) be positive integers with \(\gcd(m, n) = 1 \). Prove that for every natural number \(k \),
\[
m \mid k \land n \mid k \iff m \cdot n \mid k
\]
3. Prove that for all positive integers \(a, b, c \), if \(\gcd(a, c) = 1 \) then \(\gcd(a \cdot b, c) = \gcd(b, c) \).
4. Prove that for all positive integers \(m \) and \(n \), and integers \(i \) and \(j \):
\[
n \cdot i \equiv n \cdot j \pmod{m} \iff i \equiv j \pmod{\frac{m}{\gcd(m, n)}}
\]
5. Prove that for all positive integers \(m, n, p, q \) such that \(\gcd(m, n) = \gcd(p, q) = 1 \), if \(q \cdot m = p \cdot n \) then \(m = p \) and \(n = q \).
6. Prove that for all positive integers \(a \) and \(b \), \(\gcd(13 \cdot a + 8 \cdot b, 5 \cdot a + 3 \cdot b) = \gcd(a, b) \).
7. Let \(n \) be an integer.
 a) Prove that if \(n \) is not divisible by 3, then \(n^2 \equiv 1 \pmod{3} \).
 b) Show that if \(n \) is odd, then \(n^2 \equiv 1 \pmod{8} \).
 c) Conclude that if \(p \) is a prime number greater than 3, then \(p^2 - 1 \) is divisible by 24.
8. Prove that $n^{13} \equiv n \pmod{10}$ for all integers n.

9. Prove that for all positive integers l, m and n, if $\gcd(l, m \cdot n) = 1$ then $\gcd(l, m) = 1$ and $\gcd(l, n) = 1$.

10. Solve the following congruences:
 a) $77 \cdot x \equiv 11 \pmod{40}$
 b) $12 \cdot y \equiv 30 \pmod{54}$
 c) \[
 \begin{align*}
 13 & \equiv z \pmod{21} \\
 3 \cdot z & \equiv 2 \pmod{17}
 \end{align*}
 \]

11. What is the multiplicative inverse of: (a) 2 in \mathbb{Z}_7, (b) 7 in \mathbb{Z}_{40}, and (c) 13 in \mathbb{Z}_{23}?

12. Prove that $[22^{12001}]_{175}$ has a multiplicative inverse in \mathbb{Z}_{175}.

3.3. Optional exercises

1. Let a and b be natural numbers such that $a^2 \mid b \cdot (b + a)$. Prove that $a \mid b$.

 \textit{Hint:} For positive a and b, consider $a_0 = \frac{a}{\gcd(a, b)}$ and $b_0 = \frac{b}{\gcd(a, b)}$ so that $\gcd(a_0, b_0) = 1$, and show that $a^2 \mid b(b + a)$ implies $a_0 = 1$.

2. Prove the converse of §1.3.1(f): For all natural numbers n and s, if there exists a natural number q such that $(2n + 1)^2 \cdot s + t_n = t_q$, then s is a triangular number. (49th Putnam, 1988)

 \textit{Hint:} Recall that if $t_1 = 2nk + n + k$ then $(2n + 1)^2 t_k + t_n = t_q$. Solving for k in t_1, we get that $k = \frac{q-n}{2n+1}$; so it would be enough to show that the fraction $\frac{q-n}{2n+1}$ is a natural number.

3. Informally justify the correctness of the following alternative algorithm for computing the gcd of two positive integers:

 \begin{verbatim}
 let rec gcd0(m, n) = if m = n then m
 else let p = min m n
 and q = max m n
 in gcd0(p, q - p)
 \end{verbatim}