DIRECT AND INVERSE IMAGES

Functional Images

Definibion Let $f: A \rightarrow B$ be a function The direct image of $X \subseteq A$ under fThe set $\widehat{f'}(x) \subseteq B$, defined as $\overline{f}(x) = \{b \in B \mid \exists x \in X. f(x) = b\}$ $= \left\{ f(x) \in B \mid x \in X \right\}$

Proposition For all functions $f: A \rightarrow B$, the mapping $A \ni a \longmapsto f(a)$ determines à function $f': A \longrightarrow f(A)$ that is surjective. Moreover, whenever $f: A \rightarrow B$ is injective, f': A -> f'(A) is bijective.

Injective functions preserve cardinality

Corollary For an injective function $f: A \rightarrow B$, $\forall X \subseteq A. X \cong \vec{f}(X)$.

Definition: Let $f: A \rightarrow B$ be a function. The inverse image of Y S is the set F(Y) CA defined as $f(Y) = \{a \in A \mid f(a) \in Y\}$.

Proposition: For
$$f: A \rightarrow B$$
, the mapping
 $B \supseteq Y \longmapsto \tilde{f}(Y) \subseteq A$
determines a function
 $P(B) \longrightarrow P(A)$
that preserves the Boolean algebra
structure of powersets.

E.g. $f(Y^c) = \{a \in A \mid fa \in Y^c\}$ = { a G A | fa) \$Y ? = { a CA | f(a) ET] c $= \left(f(Y) \right)^{C}$

Relational images

Definition 150 Let $R : A \rightarrow B$ be a relation.

• The direct image of $X \subseteq A$ under R is the set $\overrightarrow{R}(X) \subseteq B$, defined as

$$\overrightarrow{R}(X) = \{ b \in B \mid \exists x \in X. x R b \} .$$

NB This construction yields a function $\overrightarrow{R} : \mathcal{P}(A) \to \mathcal{P}(B)$. - 409 -

Relational Inverse Images For $R: A \rightarrow B$, $x \in A$ is to be thought of on input mapping to the set of output volues $R\{x\} = \{y \in B \mid x R y\}$. For Y CB, Thought of as describing a property for outputs, R(Y) 11 def {XEX | R{xisy}

► The inverse image of $Y \subseteq B$ under R is the set $\overleftarrow{R}(Y) \subseteq A$, defined as

$$\overleftarrow{\mathsf{R}}(\mathsf{Y}) = \{ a \in \mathsf{A} \mid \forall b \in \mathsf{B}. a \, \mathsf{R} \, b \implies b \in \mathsf{Y} \}$$

NB: FacA. afr(1) FBEB aRDN 5\$Y

NB This construction yields a function $\overleftarrow{R} : \mathcal{P}(B) \to \mathcal{P}(A)$. - 410 --

