Uncountable Cardinality Theorem The sets $\mathcal{P}(\mathcal{N}) \cong (\mathcal{N} \Rightarrow [2]) \cong (\mathcal{N} \Rightarrow [1])$ dre not countable. PROOF: By way of contradiction, suppose That There is an enumeration $e: \mathbb{N} \longrightarrow (\mathbb{N} \Longrightarrow [2])$

o's and 1's

$$S = S(e), S(1), ..., S(i), ...,$$

iEN
That is different from each $e(h)$ for all
 $h \in AN$.
To guarantee $s \neq e(h)$ we will define
 $S(e) = E(o)(e)$
To guarantee $s \neq e(h)$ we will define
 $S(1) = e(1)(h)$

To guarantee that s is different from en) we de fine $S(n) = \overline{e(n)(n)}$ for all new. Indeed, as e is surjective, There exists sets such That equ=s. But Then $e(i)(i) = S(i) = \overline{e(i)(i)}$ A contradiction. X

And pours by, suppose there is an enumeration $e: \mathcal{N} \to \mathcal{P}(\mathcal{N})$

Define $S \in \mathcal{P}(\mathcal{N})$ $\{n\in N\}$ $n\notin e(n)$ Then, there exists $\overline{i} \in \mathbb{N}$ such that e(i) = S

It follows i e e(i) (=) i e S (=) i e e(i) J

Corollary: The sets $[0,1] \cong \mathbb{R}$ are un countable PROOF: Note That $(\mathbb{N} \Rightarrow [2]) \xrightarrow{\cong} [0,1]$ $\rightarrow \sum_{n \in \mathcal{N}} \frac{s_n}{2^{n+1}}$ ∧ ⊢ is a bijection.

Unbounded cardinality

Theorem 156 (Cantor's diagonalisation argument) For every set A, no surjection from A to $\mathcal{P}(A)$ exists. PROOF: By contradiction assume a surjection $e: A \rightarrow \mathcal{P}(A)$

Define seQ(A) def¹¹ SaEA | a ∉ e(a)} Then There exists i & A such That e(i) = S. It follows: i e e(i) (=) i e s(=) v e e(i). X Corollary For all sets A, There is no surjection from A to (A=1[2]). **Definition 157** A fixed-point of a function $f : X \to X$ is an element $x \in X$ such that f(x) = x.

Theorem 158 (Lawvere's fixed-point argument) For sets A and X, if there exists a surjection $A \rightarrow (A \Rightarrow X)$ then every function $X \rightarrow X$ has a fixed-point; and hence X is a singleton. PROOF: For sets A and X, and het $e: A \rightarrow (A \Rightarrow X)$ RTP: For every function $f: X \rightarrow X$ is $x \in X$ such that f(x) = xthere

Let $f: X \rightarrow X$.

Consider $S: A \to X$ $a \mapsto f(e(a)(a))$ There exists i $e^{i} = s$ such that e(i) = s

Then e(i)(i) = s(i) = f(e(i)(i))Hence e(i)(i) eX is à fixed point of f. A