Finite cardinality

Definition 136 A set A is said to be finite whenever $A \cong [n]$ for some $n \in \mathbb{N}$, in which case we write #A = n.

Theorem 137 For all $m, n \in \mathbb{N}$,

1.
$$\mathcal{P}([n]) \cong [2^n]$$

2.
$$[m] \times [n] \cong [m \cdot n]$$

3.
$$[m] \uplus [n] \cong [m+n]$$

4.
$$([m] \Longrightarrow [n]) \cong [(n+1)^m]$$

5.
$$([m] \Rightarrow [n]) \cong [n^m]$$

6.
$$\operatorname{Bij}([n],[n]) \cong [n!]$$

For m, n EN (i) $[m] \times [n] \cong [m \cdot n]$ (ii) $[m] \oplus [n] \cong [m+n]$ (i) Consider $(m) \times (n) \longrightarrow (m \cdot n)$ (q,r) - 7. n+r and show it is a bijection

(ii) Consider [m) (+ (n) ---) [m+n] $(0,i) \mapsto i$ (1,j) + m+j and show it is a bijection.

AMEN. ANEN. ([m]=)[n]) = [nm] PROOF: By induction on mEN. BASE CASE: $\forall n \in \mathbb{N}. ([0] \Rightarrow [n]) \cong [n^0]$ Now, $(\emptyset \Rightarrow X)$ is a singleton inhabited by The unique function $\emptyset \to X$, namely, given by the empty relation. A180, [no] = [1]. And we are done.

INDUCTIVE STEP:

Assume

(IH)
$$\forall n \in \mathbb{N} \cdot ([m] \Rightarrow [n]) \cong [n^m]$$

for men.

RTP:
$$\forall n \in \mathcal{N}. ([m+1) \Rightarrow [n]) \cong [n^{m+1}]$$

Let
$$n \in \mathbb{N}$$
.

Then $([m+1] \Rightarrow [n]) \cong ([m] \uplus [1]) \Rightarrow [n]$

$$(([m] \# [1]) \Rightarrow [n]) \cong ([m] \Rightarrow [n]) \times ([1] \Rightarrow [n])$$

$$\cong ([m] \Rightarrow [n]) \times [n]$$

$$\cong ([n^m] \times [n]) , by (IH)$$

$$\cong [n^m \times n]$$

$$= [n^{m+1}]$$

Infinity axiom

There is an infinite set, containing \emptyset and closed under successor.