Equivalence relations and set partitions

► Equivalence relations.

REAXA is an equivalence relation when ever (1) Reflexive : VICA. ZRZ (2) Symmetry: VzigeA. ZRy=)gRZ (3) Transilive: $\forall x, y, z \in A$. $\chi Ry \wedge g R z \Rightarrow \chi R z$.

Examples: For ma positive integer, let Rm S Ux H $\chi Rm \chi \iff def \chi \equiv \chi (mod m)$ · Let A be a set. $I \subseteq P(A) \times P(A)$ 11 def $\{(u,v)\in \mathcal{B}(A), \mathcal{P}(A) \mid U \cong V \}$.

Internal graph of R3 ~ 3 R+2 A partition L'72 in 3 equivalence classes.

A partition P of a set A 13 à set of subsets of A PGP(A) such that $(1) \notin P$ $(2) \cup P = A$ (3) $\forall u, v \in P. \ U \neq V \Rightarrow U \cap V = \emptyset$

Examples: Partitions of 22.

 $P_{1} = \{ Z \}$ $P_{2} = \{ Odd, Even \}$

 $P_3 = \{ \{3k \mid k \in \mathbb{Z}\}, \{3k+1 \mid k \in \mathbb{Z}\}, \{3k+2 \mid k \in \mathbb{Z}\} \}$

Theorem 134 For every set A,

PROOF:

$$equivalence$$

 $relations on A$
 $f = a$

part: EgRel(A) -> Part(A) E () port(E) equivalence à partition of A. relation Def For a CA, bet [a] = The equivalence class of a under E [] del lldef ExeAl XEag

part (E) = } BSA | Flack. B= [a]E] We have à function part: EgRel(A) \rightarrow Part(A) f for all equivalence relations E on A, part (E) is a partition of A. (1) Ø∉ part(E) Becouse eveny set in part(E) 15 of

The form[a] E for a GA end $a \in [a]_E$. Hence $[a]_E \neq \emptyset$. (2) U part(E) = A $U \{ [a]_E \subseteq A \mid a \in A \} = A$ Chearly Upart(E) S.A. So we show A C U part (E). Equivalently, for x EA. JacA. ZE[a] Ei which holds because $x \in [x]_E.$

(3) $\forall \beta_1, \beta_2 \in Part(E).$ B1 (B2 # Ø =) B1=B2 Let BI, BZE part (E). Then There exist an azeA such That $\beta_1 = [\alpha_1]_E$ and $\beta_2 = [\alpha_2]_E$. Assume $[a_1]_E \cap [a_2]_E \neq \phi$ ad let $x \in [a_1] \in \cap [a_2]_E$. Then, x Ea, and z Eaz and therefore a, Ea2.

Lemma $a_1 E a_2 \Rightarrow [a_1]_E = [a_2]_E$ Z Exercise. Lemma $[a_1]_E = [a_2]_E \Rightarrow a_1 E a_2$

Exercise

 $(1) \forall x \in A. x eq(P) x.$ BEP. ZEB. which holds because UP=A. (2) $\forall x, y \in A. x eq(P) = y eq(P) z.$ Trivially. (3) \fr,y, & EA. 2 eg(P) y ~ y eg(P) z $=) \chi eq(P) z.$ Let $x,y,z \in A$. Assume $\chi eq(P) j$; That is. JBEP. X, YEB. Assume y eq(P) 2; That is

JØEP. y, ZED. We have x,y 6p and y, 7 Er Therefore BAJ # Thus B=D Hence x, ZED. and 82 X eq(P) Z.

 \mathbb{X}

EgRel(A) = Part(A)TH (1) Y EE Eqhel(A). eq(part(E)) = E(2) $\forall P \in Port(A)$. part(eq(P)) = P

(1) Let EEEgRel (A) eq(part(E))= $\{(x,y) \in AxA \mid \exists \beta \in port(E), x, y \in \beta'\}$ $= \{(x,y) \in A \times A \mid \exists a \in A \cdot 2iy \in [a] \in i\}$ $= S(x, y) \in AxA | x E y Z$ = E

(2) Let PEPart(A) Consider port (eq(P)) $= \{ \alpha \leq A \mid \exists a \in A : \alpha = [a] eq(P) \}$ Since Pis a partition, for every a 6A, There exists à unique B(a) EP such That a & B(a) Then, $[a]eq(P) = \{x \in A\} = \{y \in P, x \in B, a \in B\}$ $= \{x \in A \mid x \in B(a)\} = B(a)$

Hence

port (eg (P)) $= \{ \alpha \leq A \mid \exists a \in A. \alpha = B(a) \}$

More over $\chi \in P \Leftrightarrow \exists a \in A. \ \alpha = B(a)$

Therefore $port(eq(P)) = \{ \alpha \leq A \mid \alpha \in P \} = P$