Function,s

 $(A \Rightarrow B) \subseteq (A \Rightarrow B) \subseteq Rel(A, B)$ The set of all functions from A to B

Functions (or maps)

Definition 123 A partial function is said to be <u>total</u>, and referred to as a <u>(total) function</u> or <u>map</u>, whenever its domain of definition coincides with its source.

$$f: A \rightarrow B$$
 is a (total) function
whenever $dom(f) = A$.
equivalently
 $\forall a \in A$. $f(a) \downarrow$

Theorem 124 For all $f \in Rel(A, B)$,

 $f \in (A \Rightarrow B) \iff \forall a \in A. \exists ! b \in B. a f b$. - 368 -

Example: Total predecessor function. totpred: $M \rightarrow M$ totpred $(n) = \int_{n-1}^{\infty} n-1$ if n=0 ,fn>,1

Inductive Definitions Example: add: N->N $\int \frac{\partial dd}{(m, 0)} = def m$ $\int \frac{\partial dd}{(m, n+1)} = \frac{\partial ef}{\partial dd}(m, n) + 1$ Example: t:N->N $t(n) = \sum_{i=0}^{n} i$. S t(0) = 0 t(n+1) = add(n,t(n))

Inductive Definitions

The function $r: N \rightarrow A$ inductively defined from acA $f: \mathbb{N} \times A \rightarrow A$ is The unique such That $\int r(0) = a$ $\int r(n+i) = f(n, r(n)) n \in \mathcal{N}$

Let A be a set. For a EA and 2 function $f: N \times A \rightarrow A$, Define $G = def \{ R \subseteq N \times A \mid R is(a, f) - Closed \}$ Def: R rs (2,f)-closed iff ORa and $\forall n \in \mathbb{N}, \forall a \in A. n R a \Rightarrow (n+1) R f(n, a)$ Theorem 1 The relation r=def nG: IN+>Å rs functional and total 2 The function r: N-> A is The unique such that r(0) = aand V(n+i) = f(n, r(n)) for all new. **Proposition 125** For all finite sets A and B,

$$\#(A \Rightarrow B) = \#B^{\#A}.$$
PROOF IDEA: $A = \{a_1, \dots, a_m\} \quad B = \{b_1, \dots, b_n\}$

$$a_1 \mapsto b_{j_1}$$
 n choices
 $a_2 \mapsto b_{j_2}$ * n choices
 $a_i \mapsto b_{j_i}$ * n choices
 $a_i \mapsto b_{j_i}$ * n choices
 $a_m \mapsto b_{j_m}$ * n choices

n^m chrices

EXTENSIONALITY PRINCIPLE **Theorem 126** The identity partial function is a function, and the composition of functions yields a function. NB 1. $f = g : A \rightarrow B$ iff $\forall a \in A$. f(a) = g(a). A give the some output on all inputs NB

2. For all sets A, the identity function $id_A : A \to A$ is given by the rule

 $\mathrm{id}_A(\mathfrak{a}) = \mathfrak{a}$

and, for all functions $f : A \to B$ and $g : B \to C$, the composition function $g \circ f : A \to C$ is given by the rule

 $(g \circ f)(a) = g(f(a))$

(fog)oh = fo(goh) $\forall x. ((fog)oh)(x) = (fo(goh))(x)$ f((goh)(x)) $(f \circ g)(h(x))$ f(g(h(x)))f(g(h(x)))f(g) f(g) = f f(g) = f(g) f(g) = f(g) f(g) f(g)Yz