Relational composition

RELATIONAL COMPOSITION Given R: A-t>B and S:B+t>C, Defne SoR: A-t>C II def {(a,c) eAxC] JbeD. aRbnbScz In other words: a (Sor) c (=) JbGB. a Rb n b Sc.

Examples $a Sg b \iff a=5^2$ $z Neg g \iff z=-y$ $(1) \qquad Sq: R > 0 + SR$ Neg: R + SRClaim: Nego Sq = Sq : Rzo + rR RTP For pERzo and gER, $p(Negosq)q \iff pSqq$

p (Nego Sq)q E) Frer. p Sgr ~ r Negg E Jrear p=r2 × r=-9 $\langle \Rightarrow p = (-q)^2$ $(=) p = q^2$ (=) p 59 9.

R: A+>B and S:B+>C (2) For define SMRCAXBXC 11 def $S(a,b,c) \in A \times B \times C(a,b) \in R \wedge (b,c) \in S^{2}$ For TCAXBXC define $P_{1,3}(T): A \to C$ { (a,c) €A×C | Jb6B. (a,b,c) €T } $P_{1,3}(SMR) = S_{OR}$ (leim:

RTP: For MaEA, CEC, $(a,c) \in R_{1,3}(SMR)$ $(a,c) \in SoR$

Theorem 102 *Relational composition is associative and has the identity relation as neutral element.*

► Associativity.

For all $R : A \longrightarrow B$, $S : B \longrightarrow C$, and $T : C \longrightarrow D$,

 $(\mathsf{T} \circ \mathsf{S}) \circ \mathsf{R} = \mathsf{T} \circ (\mathsf{S} \circ \mathsf{R})$

► Neutral element.

For all $R : A \rightarrow B$,

 $R \circ id_A = R = id_B \circ R$.

Proposition: For R: A +> B, S: B+>C, and $T: C \rightarrow D,$ $(ToS) \circ R = To(SoR): A + 7D.$

RIP For a EA, dED, PROOF: $a(tos)oR)d \in a(To(SoR))d$ a (tos)oR) d ⇒ ∃ beB. aRb ∧ b (tos) d ⇐ Jbeb. aRb ∧ JcEC. bSc ∧ cTd

E) Jbeb. JCEC. a RbabScacTd(1) a (To(SoR))d (=) JCEC. a (SoR) C ~ c7d (=) JCEC. JbEB. aRbnbScncTd(2) Since (1) (=) (2) we are done. M