
Venn diagramsa

aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

( P(U) , ∅ , U , ∪ , ∩ , (·)c )

For all A,B ∈ P(U),

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B } ∈ P(U)

A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B } ∈ P(U)

Ac = { x ∈ U | ¬(x ∈ A) } ∈ P(U)
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◮ The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

◮ The empty set ∅ is a neutral element for ∪ and the universal

set U is a neutral element for ∩.

∅ ∪A = A = U ∩A
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◮ The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

◮ With respect to each other, the union operation ∪ and the

intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)
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◮ The complement operation (·)c satisfies complementation laws.

A ∪Ac = U , A ∩Ac = ∅
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Proposition 85 Let U be a set and let A,B ∈ P(U).

1. ∀X ∈ P(U). A ∪ B ⊆ X ⇐⇒
�

A ⊆ X ∧ B ⊆ X
�

.

2. ∀X ∈ P(U). X ⊆ A ∩ B ⇐⇒
�

X ⊆ A ∧ X ⊆ B
�

.

PROOF:
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Corollary 86 Let U be a set and let A,B,C ∈ P(U).

1. C = A ∪ B

iff
�

A ⊆ C∧ B ⊆ C
�

∧
�

∀X ∈ P(U).
�

A ⊆ X ∧ B ⊆ X
�

=⇒ C ⊆ X
�

2. C = A ∩ B

iff
�

C ⊆ A∧ C ⊆ B
�

∧
�

∀X ∈ P(U).
�

X ⊆ A ∧ X ⊆ B
�

=⇒ X ⊆ C
�
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Sets and logic

P(U)
�
false , true

	

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)
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