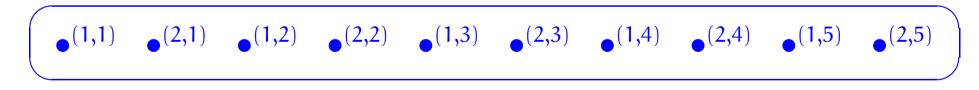


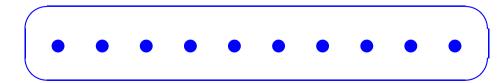
Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as



or even simply as



for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

Set membership We write \in for the membership predicate; so that xeA stands for x is an element of A We further write $x \notin A$ for $\neg (x \in A)$ Example: 0 E { 0,1 }, 1 \$ { 0 }

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall \text{ sets } A, B. A = B \iff (\forall x. x \in A \iff x \in B)$$

$$\underbrace{\text{MB}: 16\{0, 1\} \land 1\notin \{0\}}_{\{0, 1\} \in \{0, 1\} \in \{1, 0\} \neq \{2\} = \{2, 2\}}_{\{0\} \in \{2, 2\}}$$

$$\underbrace{\{0\} \neq \{0, 1\} = \{1, 0\} \neq \{2\} = \{2, 2\}}_{-284 -}$$

Proposition For
$$b \in \mathbb{R}$$
, let

$$A = \stackrel{\text{def}}{=} \sum z \in \mathbb{C} \mid 2^{2} - 2bz + c = 0 \frac{3}{2}$$

$$B = \stackrel{\text{def}}{=} \sum b + \sqrt{b^{2} - c}, \quad b - \sqrt{b^{2} - c} \frac{3}{2}$$

$$C = \stackrel{\text{def}}{=} \sum b \frac{3}{2}$$
Then,
(1) $A = B$,
and
(2) $b^{2} = c \iff B = C$.

PROOF 1DEA:

 $(!) \forall x \in \mathbb{C}.$ $\lambda^2 - 2b\lambda + c = 0$ $(z=b+\sqrt{b^2-c} \quad \sqrt{z=b-\sqrt{b^2-c}}).$

 $(2)b^{2}=c$ $\Rightarrow \left[\forall x. \left(x = b + \sqrt{b^2 - c} \quad x \neq b - \sqrt{b^2 - c} \right) \right]$ €)` x=b]

Subsets and supersets

We write ASB for $\forall x. x \in A \Rightarrow x \in B$. Ezemple: {03 5 {0,12.

Lemma 83

1. Reflexivity.

For all sets $A, A \subseteq A$.

2. Transitivity.

For all sets A, B, C, $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$.

3. Antisymmetry.

For all sets A, B, $(A \subseteq B \land B \subseteq A) \implies A = B$.

Proper subsets We let ACB stand for ASBNAZB Hence ACB TH (Yx. x EA =) X EB) ~ (Jy. y&Any EB)

Example: ¿03 c {0,13