Principle of Induction from basis l

Let P(m) be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ . If

 $\blacktriangleright P(\ell)$ holds, and

►
$$\forall n \ge l$$
 in \mathbb{N} . $(P(n) \implies P(n+1))$ also holds

then

▶ $\forall m \ge l$ in \mathbb{N} . P(m) holds.

Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ . If both

▶ $P(\ell)$ and

$$\blacktriangleright \forall n \ge \ell \text{ in } \mathbb{N}. \left(\left(\forall k \in [\ell..n], P(k) \right) \implies P(n+1) \right)$$

hold, then

▶ $\forall m \ge l$ in \mathbb{N} . P(m) holds.

NB.
$$k \in [l...n] \Leftrightarrow l \leq k \leq n$$

-257-

Fundamental Theorem of Arithmetic Proposibion. For every positive integer n there exists à finite sequence of primes (p_1, \dots, p_e) with len such that $n = \pi(p_1, \dots, p_e)$. PROOF: We prove Vnz1 mN. P(n) Here there exists a finite sequence of primes $P(n) = def(P_{1}, -, p_{e})$ with leav such that where $n = \pi(p_{1,-}, pl).$ by Strong induction.

Base case: We need prove That There exists à finite sequence of primes (p1, --, pl) with lend such that $1 = [(p_{1}, ..., pe)].$ Indeed, The product of The engly sequence of length 0 is 1. Inductive step: Let n? 1 in &. Assume the strong Induction Hypothesis (SIM) For every 12kSn There exists a fuite sequence of primes (p1, --, pek) with le EN such That k=T(P1,..., Plr).

for finite sequences of primes (pr, --. pli) and (g1, --, gej) with li and ly in N. There fore $n+1=T(p_1-pli,g_1-gg)$

25 required.

Theorem 77 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of primes $(p_1 \leq \cdots \leq p_{\ell})$ with $\ell \in \mathbb{N}$ such that

 $n = \prod (p_1, \ldots, p_\ell)$. PROOF: We prove $\forall m \in N . P(m)$ where $P(m) \stackrel{\text{def}}{=} for all primes (p_1 \leq \dots \leq p_m) \text{ and for}$ $P(m) \stackrel{\text{def}}{=} \mathcal{U} \quad n \in \mathbb{N} \text{ and } primes (q_1 \leq \dots \leq q_n)$ $\mathcal{I} \prod_{i=1}^{m} p_i = \prod_{j=1}^{n} q_j$ then m = n and nhere ¥15KSM. pr=qr. duction -263 ----

BASE CASE: RTP: for all nEN and primes $(q_1 \leq ... \leq q_n)$ $f = \pi_{j=1}^n q_j \text{ then } 0 = n.$ Let n be a natural number and let $q_1 \leq \dots \leq q_n$ be primes. Assume That $1 = \pi_{j=1}^{n} \eta_{j}$. Then $1 = 91 \cdot \dots \cdot 9n = 2n$ The refore n = 0

INDUCTIVE STEP: Let m be a natural number
and assume the Induction Hypothesis
(IH) for all primes (
$$p_1 \leq \dots \leq p_m$$
) and for all
new and primes ($q_1 \leq \dots \leq q_n$),
if $TT_{i=1}^m P_i = TT_{j=1}^n q_j$ then man and
 $\forall I \leq R \leq m \cdot P_R = q_R$.
RTP: for all primes ($s_1 \leq \dots \leq s_m \leq s_{m+1}$) and
for all lead and ($t_1 \leq \dots \leq t_n$), if
 $TT_{i=1}^m s_i = TT_i$ to then mH all and
 $\forall I \leq R \leq m+1$, $s_R = t_R$.

Let (S15---5 Sm5 Sm+1) be primes, and let l be a natural number and (tis-...ste) be primes. Assume: $\mathcal{M}_{i=1}^{m+1} S_i = \mathcal{M}_{j=1}^{\ell} t_j^{j}$. (*) RTP: m+1=l and VIERSm+1. SR=tr. By (\mathbf{x}) , $s_1 \mid \mathcal{T}_{j=1}^{\ell}$ tj. Therefore $\ell \neq 0$ and, by Euclid's The $s_1 \mid t_j$, for some $1 \leq j_0 \leq \ell$. Euclid's The $s_1 \mid t_j$, for some $1 \leq j_0 \leq \ell$. So, $s_1 = t_j > t_1$. Analogously, by (\mathbf{x}) , $t_1 \mid \mathcal{T}_{i=1}^{m_H}$, And there fore $t_1 \mid s_1 \circ for some <math>1 \leq i_0 \leq m_H$. Again, $t_1 = s_1 \circ > s_1$. By () and (2), $s_1 = t_1$.

