Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.

Exoupes
N, Z, &K, ¢
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Set membership

The symbol ‘€’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]

IS

{2}

{true, false}
{—2,—-1,0,1,2,3}
//

{ 0,-2, 1,2,——-4,Bj
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Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{ixe A|P(x)} , {x e A:P(x)}

0 TIAL g—fj)— [”'2”3] (£

I XEWL | =2 v x=-lvr=0v x=] V;c=2vx=3j
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