DIVISION THEOREM AND ALGORITHM

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0, 0 \le r < n$, and $m = q \cdot n + r$.

The division theorem and algorithm

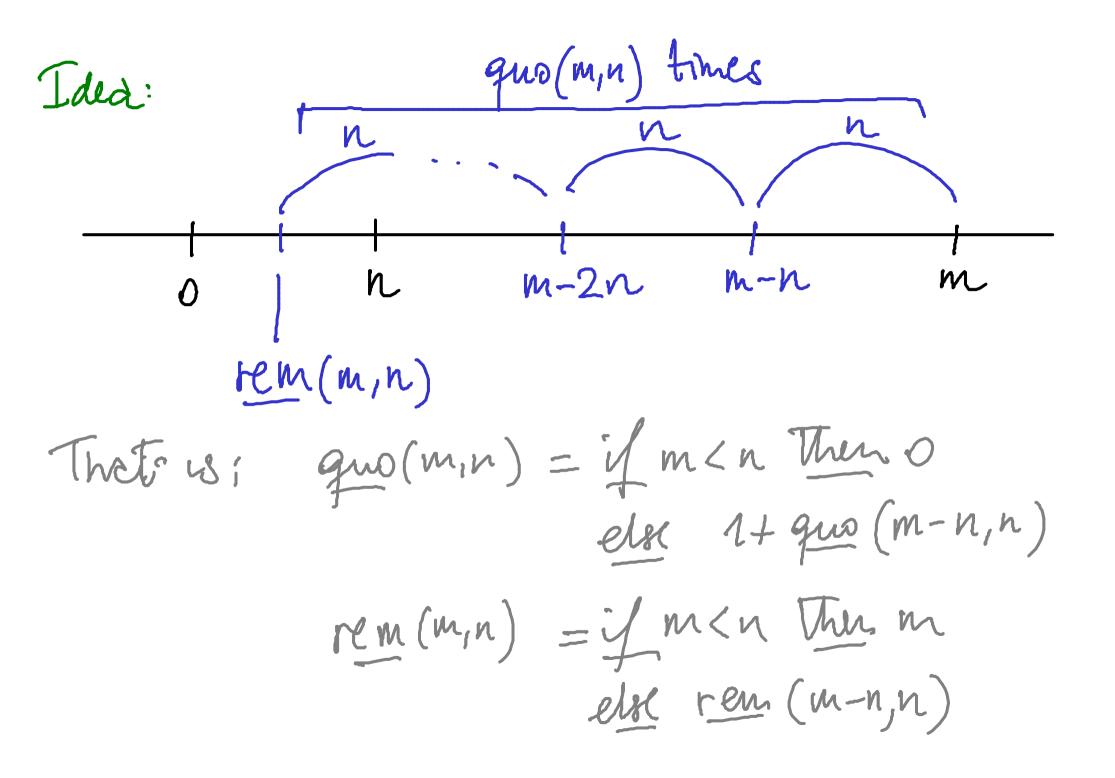
Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

PROOF OF Theorem 43:

$$Uniqueness$$
 Let
 $n = q_1 \cdot n tr_1$ $0 \le r_1 \le n$
 $m = q_2 \cdot n tr_2$ $0 \le r_2 \le n$
RTP $r_1 = r_2$ and $q_1 = q_2$
From $(*)$, we have $m \equiv r_1 \pmod{n}$ $0 \le r_1 \le n$
 $m \equiv r_2 \pmod{n}$ $0 \le r_2 \le n$
There fore, by a previous proposition, $r_1 = r_2$.
Morever, $q_1 n = q_2 n$ and, by concellation, $q_1 = q_2$:

Given a natural number
$$m$$
 and a
posibive integer n , it remains to
show that there are natural numbers
 $guo(m,n)$ and $rem(m,n)$, the latter
below n , and $rem(m,n)$, the latter
 $m = guo(m,n) \cdot n + rem(m,n)$
We will in fact compute Them by
means of the
Division Algorithm



The Division Algorithm in ML:

```
fun divalg( m , n )
 = let
     fun diviter( q , r )
       = if r < n then (q, r)
         else diviter( q+1 , r-n )
   in
     diviter( 0 , m )
   end
fun quo(m, n) = #1(divalg(m, n))
```

fun rem(m, n) = #2(divalg(m, n))

Computation Tree

$$divolg(m,n) = diviter(0,m)$$

 $mcn / main
(0,m) $diviter(1,m-n)$
 $m-n < n / m-n > n$
 $(1,m-n)$
 $diviter(q,r)$
 $r < n / r > n$
 $(q,r) $diviter(q+1,r-n)$$$

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF:

divolg(m,n) = diviter(0,m) 1 mzn men / diviter (1, m-n) (0,m) $m-n < n / m-n \ge n$ (1, m-n)diriter (gr) r<n r>n (q,r)diviter (q+1, r-n)

As for portial correctness; i.e. That

$$M = q_{10}(m, n) \cdot n + rem(m, n)$$
 (7)
 $0 \le rem(m, n) < n$ (7)
We show the invariant property that
on all calls of diviter(q,r) one has
 $M = q \cdot n + r$
The last call will therefore yield (*).

$$m=0.n+m, m \ge 0$$

$$dvolg(m,n) = dvoiter(0,m)$$

$$mcn / m \ge n$$

Suppose (0,m) dvoiter(1,m-n)

$$m=qn+r, r \ge 0 \qquad m-n < n / m-n \ge n$$

If r(n then (1,m-n)

$$qvo(m,n) = q \qquad dvoiter(q,r)$$

$$rem(m,n) = r$$

sotisfy the required properties / ren
(n,n) = r
Sotisfy the required properties / ren
(1,m-n) / ren
M=(q,r) dvoiter(q+,r-n) / r=n > 0.

-

Proposition 46 Let m be a positive integer. For all natural numbers k and l,

 $k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m)$. PROOF: Let m be a prositive intéger. Let k and l be natural numbers. (=) Assume k=l(nurdm) Then, R = l + im for some integer i = $\left[q_{10}(l_{1m})+i\right] \cdot m + rem(l_{1m})$ Therefore rem (k, m) = rem (l, m) -161

het m be a proitire integer. Let k and l be natural numbers. (E) Assume: rem(k,m) = rem(l,m)Then, $k-l = \left[q_{10}(R_1m) - q_{10}(l,m)\right] \cdot m$ $f\left[\operatorname{rem}(R,m)-\operatorname{rem}(l,m)\right]$

 $= \left[q_{\mu}o(k,m) - q_{\mu}o(k,m)\right]. m$

Corollary 47 Let m be a positive integer.

1. For every natural number n,

 $n \equiv \operatorname{rem}(n,m) \pmod{m}$.

PROOF:

Corollary 47 Let m be a positive integer.

1. For every natural number n,

```
n \equiv \operatorname{rem}(n, m) \pmod{m} .
```

2. For every integer k there exists a unique integer $[k]_m$ such that $0 \le [k]_m < m \text{ and } k \equiv [k]_m \pmod{m}$.

PROOF:

— 164-a —