Unique existence

The notation

$$\exists! x. P(x)$$

stands for

the unique existence of an \(x \) for which the property \(P(x) \) holds.

That is,

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \implies y = z)$$

existence \underline{uniqueness}
The congruence property modulo \(m \) uniquely characterises the natural numbers from 0 to \(m-1 \).

Proposition. Let \(m \) be a positive integer and let \(n \) be an integer.

Define

\[
P(z) = \text{def} \left[0 \leq z < m \land z \equiv n \pmod{m} \right]
\]

Then

\[
\forall x, y . P(x) \land P(y) \Rightarrow x = y
\]
PROOF: Let \(m \) be a positive integer and let \(n \) be an integer.
Let \(x \) and \(y \) be arbitrary.
Assume: (1) \(0 \leq x < m \) \(\land \) (2) \(x \equiv n \) \((\text{mod } m)\)
(3) \(0 \leq y < m \) \(\land \) (4) \(y \equiv n \) \((\text{mod } m)\)

\[\text{RTP: } x = y \]

From (2) and (4), \(x - y = km \) for some integer \(k \).
Therefore \(km = x - y < m \) by (1) and (3); and so
\(k \leq 0 \). Also \(-km = y - x < m \) by (1) and (3); and so
\(-k \leq 0 \). Thus, \(k = 0 \) and so \(x = y \). \(\square \)
A proof strategy

To prove

\[\forall x. \exists! y. P(x,y) \]

given an arbitrary \(x \) construct the unique witness and name it, say \(f(x) \), showing that

\[P(x, f(x)) \]

and

\[\forall y. P(x,y) \Rightarrow y = f(x) \]

hold.