Numbers Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- ► To understand and be able to proficiently use the Principle of Mathematical Induction in its yarious forms.

Natural numbers

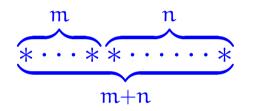
In the beginning there were the *<u>natural numbers</u>*

 \mathbb{N} : 0, 1, ..., n, n+1, ...

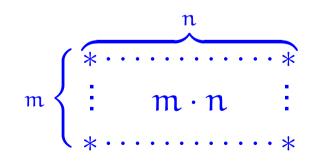
generated from zero by successive increment; that is, put in ML:

datatype
N = zero | succ of N

The basic operations of this number system are:



Multiplication



The <u>additive structure</u> $(\mathbb{N}, 0, +)$ of natural numbers with zero and addition satisfies the following:

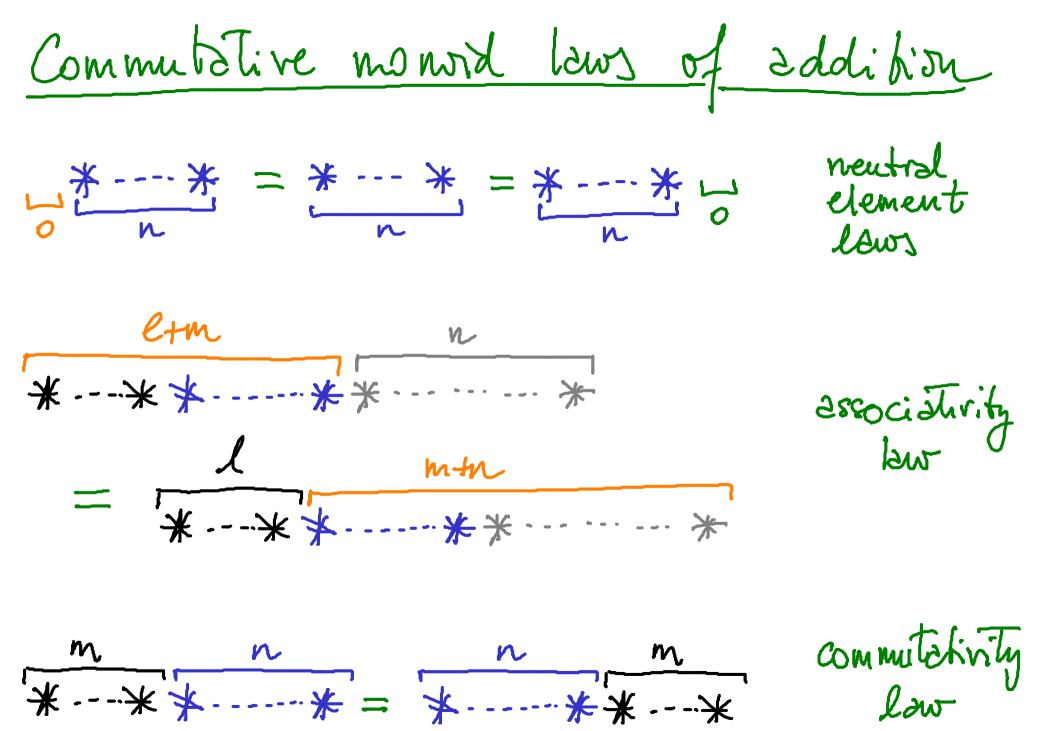
Monoid laws

0 + n = n = n + 0, (l + m) + n = l + (m + n)

► Commutativity law

m + n = n + m

and as such is what in the mathematical jargon is referred to as a *<u>commutative monoid</u>*.



Monoids

A monord is en algebraic structure with a neutral element, say e,
à binary operation, say *, sahisfying • neutral element lews: exz=z=z*e • associativity law: (x * y) * z = x * (y * 2)A monord is commutative if commutativity: x*y = y*x is satisfied.

Ezample

The ML type & list with neutral element not and binary operation. C (append) is a monorid. unit lost is a commutative monorid.

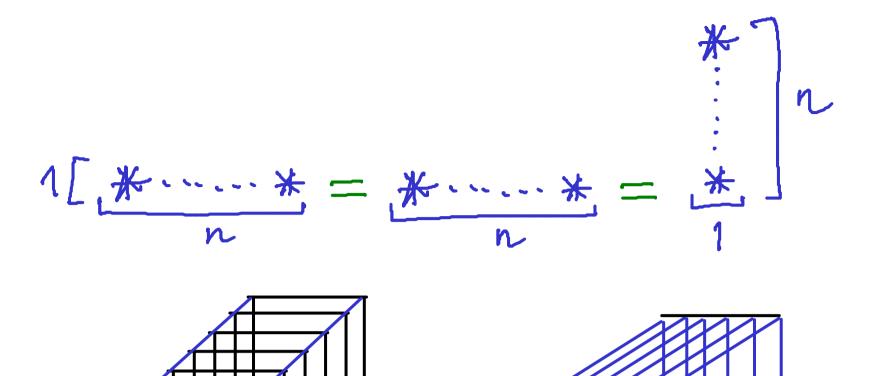
Also the *multiplicative structure* $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

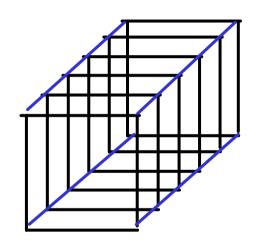
Monoid laws

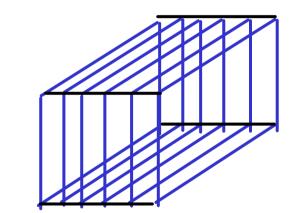
$$1 \cdot n = n = n \cdot 1$$
, $(l \cdot m) \cdot n = l \cdot (m \cdot n)$

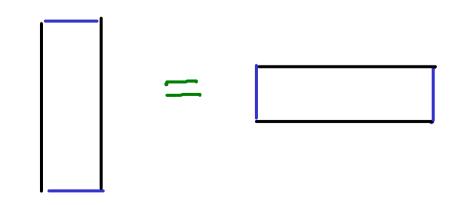
Commutativity law

 $\mathbf{m} \cdot \mathbf{n} = \mathbf{n} \cdot \mathbf{m}$



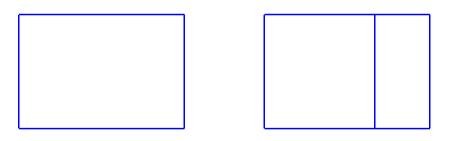






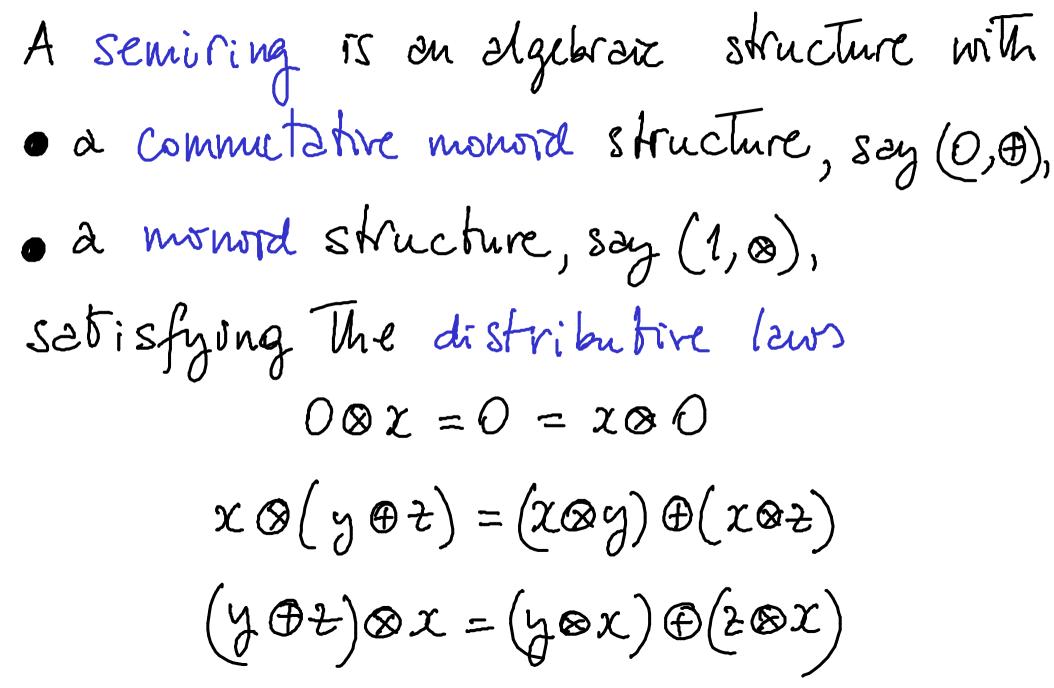
The additive and multiplicative structures interact nicely in that they satisfy the

► Distributive laws $l \cdot 0 = 0$ $l \cdot (m+n) = l \cdot m + l \cdot n$



and make the overall structure $(\mathbb{N}, 0, +, 1, \cdot)$ into what in the mathematical jargon is referred to as a *commutative semiring*.

SEMIRINGS



A semiring is commutative whenever & is.

Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

► Additive cancellation

For all natural numbers k, m, n,

$$k + m = k + n \implies m = n$$

Multiplicative cancellation

For all natural numbers k, m, n,

if $k \neq 0$ then $k \cdot m = k \cdot n \implies m = n$.

CANCELLATION

A binery operation * allows concellation by an element c • on the left: if c* z = c* y implies z=y • on the right: if z*c = y*c implies z= y

Example: The append operation on lists allows concellation by any list on both The left and The right.

INVERSES

For a monord with a neutral element e and a binary operation *, on element & is said to admit an:

- inverse on the left if there exists on element l such that $l \neq z = e$
- inverse on the right if there exists in element r such that 2xr = e
 inverse of it admits both beft and right inverses

Proposition. For a monoid
$$(e, *)$$
 if an
element admits an inverse then its left
and right inverses are equal.
PROOF: Let x be an element with lift
inverse l (so That $l * z = e$) and right
inverse r (so That $x * r = e$).
Then,
 $r = e * r = (l * z) * r = l * (z * r) = l * e$
 $= l$

Proposition. For a monord (e,*) if on element has an inverse then it is concellable. PROOF: Let c be on element with inverse c. RTP $\forall x, y. \ c \neq z = c \neq y =) \ z = y$ and $\forall x, y. \ x \neq c = y \neq c =) \ z = y$. Assume x and yarbitrary such That CXX = cxy $(\overline{\zeta} * c) * \chi = \overline{c} * (c * \chi) = \overline{c} * (c * \chi)$ $e^{i}_{*}\chi = \chi$ $(\bar{c}_{*}c)_{*}y = e_{*}y = \mathcal{J}_{R}$

GROUPS

A group is a monorid in which every element has an inverse

An Abelian group 13 à group for which the monord is commutative.

Inverses

Definition 42

- 1. A number x is said to admit an additive inverse whenever there exists a number y such that x + y = 0.
- 2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y = 1$.

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

 (\mathfrak{i}) the *integers*

 \mathbb{Z} : ... - n, ..., -1, 0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to as a *commutative ring*, and

(ii) the <u>rationals</u> \mathbb{Q} which then form what in the mathematical jargon is referred to as a <u>field</u>.

Rings

A ring is a semiring $(0, \oplus, 1, \otimes)$ in which the commutative monoid $(0, \oplus)$ is a group A ring is commutative if so is the monord $(1, \otimes)$. FIELDS A field is à commitative ring in which every element besides 0 has a reciprocel (that is, on inverse with respect to @).