Fermat's Little Theorem
A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers \(m \), \(n \) and primes \(p \),

\[(m + n)^p \equiv m^p + n^p \pmod{p} .\]

Proof:

If \(a_i \equiv b_i \pmod{m} \) \(i = 1, \ldots, n \),

Then \(\sum_{i=1}^{n} \ a_i \equiv \sum_{i=1}^{n} \ b_i \pmod{m} \)

and \(\prod_{i=1}^{n} \ a_i \equiv \prod_{i=1}^{n} \ b_i \pmod{m} .\)
Let \(m \) and \(n \) be natural numbers and let \(p \) be a prime.

\[
\text{RTPP : } (m+n)^p \equiv m^p + n^p \pmod{p}
\]

\[
(m+n)^p = \sum_{i=0}^{p} \binom{p}{i} m^i n^{p-i}
\]

\[
= \sum_{i=1}^{p-1} \binom{p}{i} m^i n^{p-i} + m^p + n^p
\]

\[
\equiv 0 \pmod{p}
\]
Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$\sqrt{(m + 1)^p \equiv m^p + 1 \pmod{p}}$$

Proposition 35 (The Many Dropout Lemma) For all natural numbers m and i, and primes p,

$$\sqrt{(m + i)^p \equiv m^p + i \pmod{p}}$$

PROOF:

$$i^p = i \pmod{p}$$
Let m and i be natural numbers and p a prime.

\[\text{RTP } (m+i)^p = mp + i \pmod{p} \]

- For $i = 0$: $(m+i)^p = mp = mp+i \checkmark$
- For $i > 1$: $(m+i)^p = (m+(i-1)+1)^p$
 \[= (m+(i-1))^p + 1 \]
 \[= m^p + 1 \]
- For $i > 2$: \ldots
- For $i > 3$: \ldots
for i > k: \[(m + i)^p \equiv (m + (i - k))^p + k \]

for \(i = k \) \[(m + i)^p \equiv m^p + i \]
The Many Dropout Lemma (Proposition 35) gives the first part of the following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) *For all natural numbers* \(i \) *and primes* \(p \),

1. \(i^p \equiv i \pmod{p} \), and
2. \(i^{p-1} \equiv 1 \pmod{p} \) *whenever* \(i \) *is not a multiple of* \(p \).

The fact that the first part of Fermat’s Little Theorem implies the second one will be proved later on.
Fermat's Little Theorem

\[i \neq 0 \pmod{p} \Rightarrow i^{p-1} \equiv 1 \pmod{p} \]

Every \(i \neq 0 \pmod{p} \) has a reciprocal modulo \(p \); namely \(i^{p-2} \), since \(i \cdot (i^{p-2}) \equiv 1 \pmod{p} \)
Btw

1. Fermat’s Little Theorem has applications to:

 (a) primality testing\(^a\),

 (b) the verification of floating-point algorithms, and

 (c) cryptographic security.

\(^a\)For instance, to establish that a positive integer \(m\) is not prime one may proceed to find an integer \(i\) such that \(i^m \not\equiv i \, (\text{mod } m)\).