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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(M 4+ n)? = mP +nP (mod p) .
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

J\/\/ (Mm+1)P =mP 4+ 1 (mod p) 1/\/\/

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

./\/\/(m+i)‘9£mp+i(modp) V\/\/
PROOF:
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The Many Dropout Lemma (Proposition 35) gives the fist part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i
and primes p,

@ iP =1 (mod p), and
@ iP~! = 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # i (mod m).
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