DISJUNCTIONS

How to prove them as goals.
How to use them as assumptions.

Disjunction

Disjunctive statements are of the form

or, in other words,

either P, Q, or both hold

or, in symbols,

The main proof strategy for disjunction:

To prove a goal of the form

 $P \lor Q$

you may

- 1. try to prove P (if you succeed, then you are done); or
- try to prove Q (if you succeed, then you are done);
 otherwise
- 3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

PROOF:

(1)
$$n^2 \stackrel{?}{\equiv} 0 \pmod{4} \times$$

(2) $n^2 \stackrel{?}{\equiv} 1 \pmod{4} \times$

Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$. PROOF: Let n be on integer. CASEI nistren; r.e. n=2i for some ind i Then $n^2 = 4i^2$ and hence $n^2 \equiv 0 \pmod{4}$ CASEZ nis odd jill h= 2it for some Then $n^2 = (2iH)^2 = 4(i^2H) + 1$

and hence $n^2 \equiv 1 \pmod{4}$.

Thus either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ as required.

The use of disjunction:

To use a disjunctive assumption

$P_1 ~\lor~ P_2$

to establish a goal Q, consider the following two cases in turn: (i) assume P_1 to establish Q, and (ii) assume P_2 to establish Q.

Before using the strategy

Assumptions Goal Q .

 $P_1 \vee P_2$

After using the strategyAssumptionsGoalAssumptionsGoalQQQ \vdots \vdots \vdots P1P2

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$P_1 ~\lor~ P_2$

write: We prove the following two cases in turn: (i) that assuming P_1 , we have Q; and (ii) that assuming P_2 , we have Q. Case (i): Assume P_1 . and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2 . and provide a proof of Q from it and the other assumptions.

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if m = 0 or m = p then $\binom{p}{m} \equiv 1 \pmod{p}$. PROOF: Let p be a proitire integer and let m be a natural number. Assume m=0 or m=p $RTP: \begin{pmatrix} P \\ m \end{pmatrix} = a \int \frac{p!}{m!(p-m)!} \equiv 1 \pmod{p}$

Assume
$$m = 0$$

 $RTP \begin{pmatrix} P \\ 0 \end{pmatrix} \equiv 1 \pmod{p}$
 $I \pmod{p}$
 $I \pmod{p} = 1 \pmod{p}$
 $I \pmod{p} \equiv 1 \pmod{p}$
 $RTP \begin{pmatrix} P \\ p \end{pmatrix} \equiv 1 \pmod{p}$
 $RTP \begin{pmatrix} P \\ p \end{pmatrix} \equiv 1 \pmod{p}$
 $I (p \pmod{p}$
 $I (p \pmod{p})$
 $I (p \binom{p})$
 $I (p \pmod{p})$
 $I (p \binom{p})$
 $I (p \binom{p})$

Lemma 28 For all integers p and m, if p is prime and 0 < m < pthen $\binom{p}{m} \equiv 0 \pmod{p}$.

PROOF: Let p be a prime number and bet m be a positive intéger below p. $RTP: (p) \equiv O(msd P).$

So $\binom{p}{m} \equiv O(nvdp) \rightleftharpoons \frac{(p-1)!}{m!(p-m)!}$ is a not. m!(p-m)! mumber

-111 -

We know That 15 2 notural number p. <u>(p-1)!</u> m! (p-m)! Hence: (1) m!(p-m)! divides p(p-1)! Since p is a prime and m <p and p-m<p. (2) m! (p-m)! and p have only 1 252 common factor

From (1) and (2), m!(p-m)! should divide (p-i)!

Proposition 29 For all prime numbers p and integers $0 \le m \le p$, either $\binom{p}{m} \equiv 0 \pmod{p}$ or $\binom{p}{m} \equiv 1 \pmod{p}$. PROOF: Let p be 2 prome and let m be a natural muser ranging from 0 to p. CASE 1 m = 0. Then $\binom{p}{m} = 1 \pmod{p}$ CASE2 m = p. Then $(p_n) \equiv 1 \pmod{p}$ CASES O < m < p. Then $(p_m) \equiv O(n v d p)$ Hence either $\binom{p}{m} \equiv O(mod p) \text{ or } \binom{p}{m} \equiv 1 \pmod{p}$ ds required. -113 -