DISTJUNCTIONS

• How to prove them as goals.
&
• How to use them as assumptions.
Disjunction

Disjunctive statements are of the form

\[P \text{ or } Q \]

or, in other words,

either \(P, Q \), or both hold

or, in symbols,

\[P \lor Q \]
The main proof strategy for disjunction:

To prove a goal of the form

$$ P \lor Q $$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q.
Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

PROOF:

(1) $n^2 \equiv 0 \pmod{4}$ \times

(2) $n^2 \equiv 1 \pmod{4}$ \times
Proposition 25 For all integers \(n \), either \(n^2 \equiv 0 \) (mod 4) or \(n^2 \equiv 1 \) (mod 4).

PROOF: Let \(n \) be an integer.

CASE 1 \(n \) is even; i.e. \(n = 2i \) for some int \(i \)

Then \(n^2 = 4i^2 \) and hence \(n^2 \equiv 0 \) (mod 4)

CASE 2 \(n \) is odd; i.e. \(n = 2i+1 \) for some int \(i \)

Then \(n^2 = (2i+1)^2 = 4(i^2+i) + 1 \)

and hence \(n^2 \equiv 1 \) (mod 4).
Thus either \(n^2 \equiv 0 \pmod{4} \) or \(n^2 \equiv 1 \pmod{4} \)

as required.
The use of disjunction:

To use a disjunctive assumption

\[P_1 \lor P_2 \]

to establish a goal \(Q \), consider the following two cases in turn: (i) assume \(P_1 \) to establish \(Q \), and (ii) assume \(P_2 \) to establish \(Q \).
Scratch work:

Before using the strategy

Assumptions \hspace{1cm} Goal
\vdots
P_1 \lor P_2

After using the strategy

Assumptions \hspace{1cm} Goal \hspace{1cm} Assumptions \hspace{1cm} Goal
\vdots
P_1 \hspace{4cm} \vdots
P_2
Proof pattern:
In order to prove Q from some assumptions amongst which there is

\[P_1 \lor P_2 \]

write: We prove the following two cases in turn: (i) that assuming P_1, we have Q; and (ii) that assuming P_2, we have Q. Case (i): Assume P_1. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2. and provide a proof of Q from it and the other assumptions.
A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if $m = 0$ or $m = p$ then $\binom{p}{m} \equiv 1 \pmod{p}$.

Proof: Let p be a positive integer and let m be a natural number.

Assume $m = 0$ or $m = p$

RTP: $\binom{p}{m} = \frac{p!}{m!(p-m)!} \equiv 1 \pmod{p}$
Assume \(m = 0 \)

\[
\text{RIP } (\mathbf{0}) \equiv 1 \mod p
\]

\[\vdash\]

1 and we are done.

Assume \(m = p \)

\[
\text{RIP } (\mathbf{p}) \equiv 1 \mod p
\]

\[\vdash\]

1 and we are done.
Lemma 28 For all integers p and m, if p is prime and $0 < m < p$ then \(\binom{p}{m} \equiv 0 \pmod{p} \).

Proof: Let p be a prime number and let m be a positive integer below p.

RTP: \(\binom{p}{m} \equiv 0 \pmod{p} \).

\[
\binom{p}{m} = \frac{p!}{m! (p-m)!} = p \cdot \left[\frac{(p-1)!}{m! (p-m)!} \right]
\]

So \(\binom{p}{m} \equiv 0 \pmod{p} \iff \frac{(p-1)!}{m! (p-m)!} \) is a not. number.
We know that
\[p \cdot \frac{(p-1)!}{m! (p-m)!} \] is a natural number.

Hence:
1. \(m! (p-m)! \) divides \(p(p-1)! \)

Since \(p \) is a prime and \(m < p \) and \(p-m < p \).
2. \(m! (p-m)! \) and \(p \) have only 1 as a common factor

From (1) and (2), \(m! (p-m)! \) should divide \(p(p-1)! \).
Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0 \pmod{p}$ or $\binom{p}{m} \equiv 1 \pmod{p}$.

Proof: Let p be a prime and let m be a natural number ranging from 0 to p.

Case 1 $m = 0$. Then $\binom{p}{m} \equiv 1 \pmod{p}$

Case 2 $m = p$. Then $\binom{p}{m} \equiv 1 \pmod{p}$

Case 3 $0 < m < p$. Then $\binom{p}{m} \equiv 0 \pmod{p}$

Hence, either $\binom{p}{m} \equiv 0 \pmod{p}$ or $\binom{p}{m} \equiv 1 \pmod{p}$ as required.