EXISTENTIAL QUANTIFICATION

• How to prove them as goals.
• How to use them as assumptions.
Existential quantification

Existential statements are of the form

there exists an individual \(x \) in the universe of discourse for which the property \(P(x) \) holds

or, in other words,

for some individual \(x \) in the universe of discourse, the property \(P(x) \) holds

or, in symbols,

\[
\exists x. P(x)
\]
for all positive integers n and for all natural numbers p_1, p_2, \ldots, p_n if

\[p_1 + p_2 + \ldots + p_n = n + 1 \]

then there exists a positive integer i less than or equal to n such that p_i is greater than 1.

Example: The Pigeonhole Principle.

Let n be a positive integer. If $n + 1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.
Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[a, b]$. For every y in between $f(a)$ and $f(b)$, there exists v in between a and b such that $f(v) = y$.

Intuition:
The main proof strategy for existential statements:

To prove a goal of the form

$$\exists x. P(x)$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $P(w)$, i.e. the predicate $P(x)$ instantiated with the value w, holds.
Proof pattern:
In order to prove

\[\exists x. P(x) \]

1. **Write:** Let \(w = \ldots \) (the witness you decided on).
2. **Provide a proof of** \(P(w) \).
Scratch work:

Before using the strategy

Assumptions

Goal

$\exists x. P(x)$

After using the strategy

Assumptions

Goals

$P(w)$

$w = \ldots$ (the witness you decided on)
Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$.

Proof: Given a positive integer k, we need to find natural numbers i and j such that $4k = i^2 - j^2$.

Given k, we guess:

$$i = k + 1$$

$$j = k - 1$$
Proposition 22 For every positive integer \(k \), there exist natural numbers \(i \) and \(j \) such that \(4 \cdot k = i^2 - j^2 \).

Proof: Let \(k \) be a positive integer.

RTP \(\exists \) nat. numbers \(i, j \). \(4k = i^2 - j^2 \).

Let \(i = k+1 \) and \(j = k-1 \).

RTP: \(4k = i^2 - j^2 \)

Indeed, \(i^2 - j^2 = (k+1)^2 - (k-1)^2 = 4k \) \(\square \)
USE OF EXISTENTIAL ASSUMPTIONS

SCRATCH WORK

Before using the strategy:

Assumptions:

\[\exists x. P(x) \]

After using the strategy:

Assumptions:

\[\exists x. P(x) \]

\[P(x_0) \] for a new or fresh \(x_0 \)

Goal ---

Goal ---
Assumptions
Let x be arbitrary

\[
\exists y. y = 0
\]

$x = 0$

Goal

\[
\forall x. (\exists y. y = 0) \Rightarrow x = 0
\]
Assumptions

Let x be arbitrary.

\[\exists y. y = 0 \]

\[y = 0 \]

\[z = 0 \]

\[\therefore x = 0 \]

Goal

\[\forall x. (\exists y. y = 0) \Rightarrow x = 0 \]
The use of existential statements:

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P(x_0)$ true.
Theorem 24 For all integers \(l, m, n \), if \(l \mid m \) and \(m \mid n \) then \(l \mid n \).

Proof: Let \(l, m, \) and \(n \) be integers.
Assume that \(l \mid m \) and \(m \mid n \).
That is:

1. \(\exists \text{ int. } i \text{ s.t. } m = i \cdot l \)
2. \(\exists \text{ int. } j \text{ s.t. } n = j \cdot m \)

Using (1), \(m = i \cdot l \)
Using (2), \(n = j \cdot m \)

Then, \(n = j \cdot m = (j \cdot i) \cdot l \)
Hence,

there exists an int. k, namely $k = \text{int. }$, such that $n = k \cdot e$.

That is,

e/n

as required.