EXISTENTIAL QUANTIFICATION

How to use them is goals. How to use them is issumptions.

Existential quantification

Existential statements are of the form

there exists an individual x in the universe of discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the property P(x) holds

 $\exists x. P(x)$

— 83 -

equivalently Jy. Ply)

Jz.P(2)

or, in symbols,

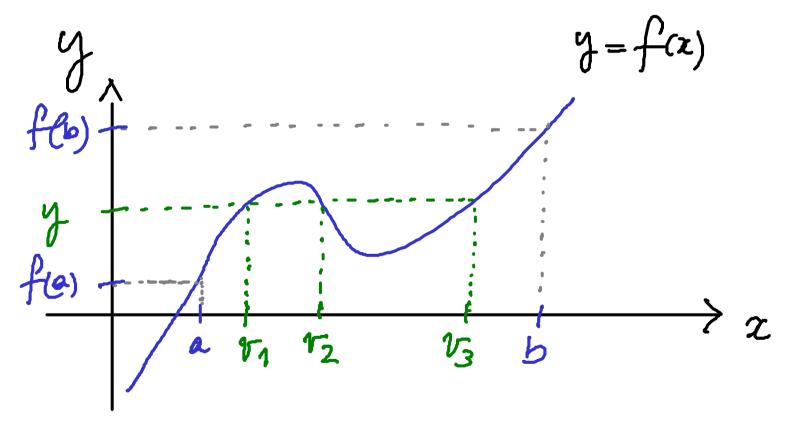
for all positive integers n and for all natural numbers $p_{1}, p_{2}, ..., p_{n}$ if $p_{1}+p_{2}+\cdots+p_{n}=n+1$ then there exists a positive integer i less than or equal n such that pi is greater than 1.

Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval [a, b]. For every y in between f(a) and f(b), there exists v in between a and b such that f(v) = y.

Intuition:



-85 -

The main proof strategy for existential statements:

To prove a goal of the form

$\exists x. P(x)$

find a *witness* for the existential statement; that is, a value of x, say w, for which you think P(x) will be true, and show that indeed P(w), i.e. the predicate P(x) instantiated with the value w, holds.

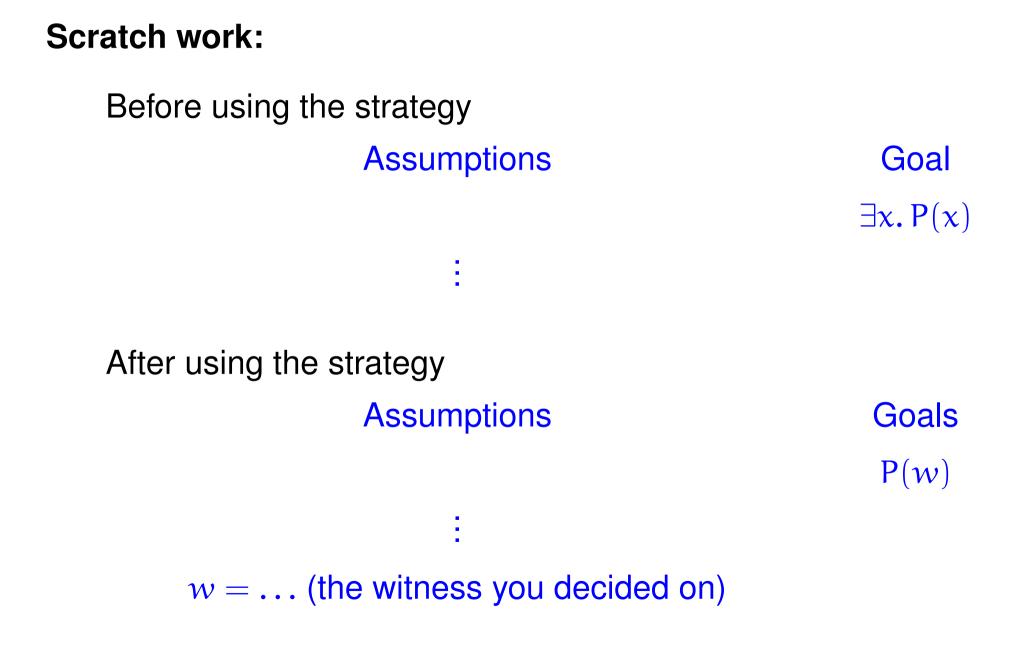
Proof pattern:

In order to prove

 $\exists x. P(x)$

1. Write: Let $w = \ldots$ (the witness you decided on).

2. Provide a proof of P(w).



Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$. PROOF: Griven a positive integer & we need find notural numbers i and j such that $4k=i^2-j^2$. We guess i= k fl -~92 -

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$. PROOF: Let k be a positive integer. RTP $\exists pat. numbers i, j. 4k = i^2 - j^2$. Let i= kt and j=k-1. $RTP: 4k=i^2-j^2$ Indeed, $i^2 - j^2 = (k+1)^2 - (k-1)^2 = 4k$

-92 -

USE OF EXISTENTIAL ASSUMPTIONS SCRATCH WORK Before using the strategy Assumptions God $\exists x. P(x)$ After using the strategy Assumptions God $\exists x. P(x)$ P(xo) for a new or fresh xo

non sense
God

$$fz.(Jy.y=0)=7x=0$$

Assumptions
Let x be arbitrary
Assumptions
Let z be arbitrary
 $Jy.y=0$
 $Jy.y=0$
 $Z=0$
 $Z=0$

•

The use of existential statements:

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property P(x) holds. This means that you can now assume $P(x_0)$ true.

Theorem 24 For all integers $l, m, n, if l \mid m$ and $m \mid n$ then $l \mid n$. PROOF: Let l, m, and n be integers. Assume that l/m and m/n. That is: () $\exists mt.i s.t. m=i.l$ and () $\exists mt.j s.t. n=j.m$ Using (1), m=i·l Using (2), n=jmThen, $n = j \cdot m = (j \cdot i) \cdot l$ -95

Hence, There exists an int. k, nonely $k = j \cdot i$, such that $n = k \cdot \ell$. That is, Iln 25 required. R