Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

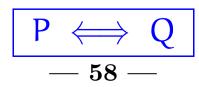
Q implies P, and vice versa

or

P if, and only if, Q

P iff Q

or, in symbols,



Proof pattern: In order to prove that $P \iff Q$ 1. Write: (\Longrightarrow) and give a proof of $P \implies Q$.

2. Write: (\Leftarrow) and give a proof of $Q \implies P$.

Proposition 12 Suppose that n is an integer. Then, n is even iff n^2 is even.

PROOF: Let n be on integer. (=) If n is even then so is n². Assume niswen; That n = 2i for an integer i. Then, $n^2 = 2(2i^2)$ and hence 2180 on even integer. (\Leftarrow) If n^2 is even then n is even. Equivalently, ne prove the contrapositive state-ment: If n is odd then so is n². This is 2 corollary of Proposition 8.

DivisiBility: For integers dandn, _d divides n or, in other words, n is a multiple of d for anoch we write dIn whenever n=k.d for kon integer. Ezample: For n an integer, $O(n \Leftrightarrow n = 0.$

Divisibility and congruence

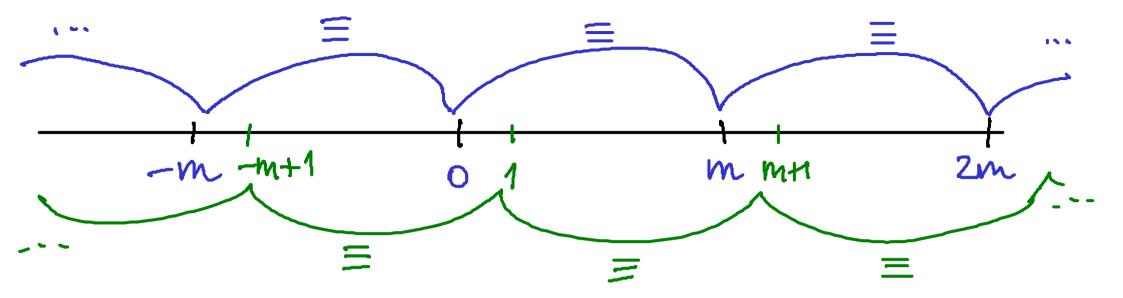
Definition 13 Let d and n be integers. We say that d divides n, and write $d \mid n$, whenever there is an integer k such that $n = k \cdot d$.

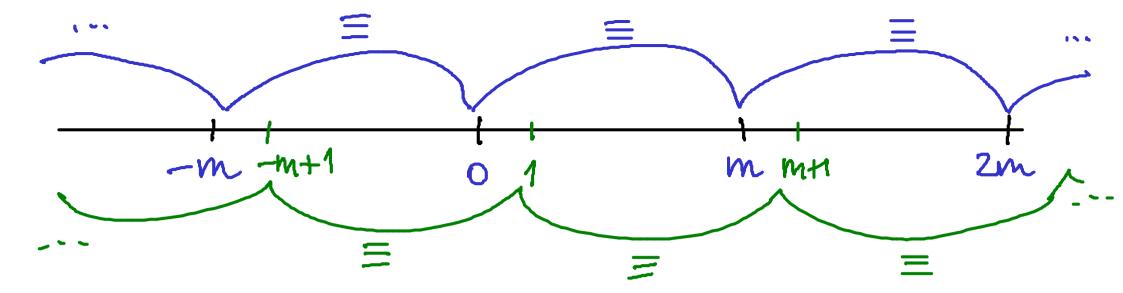
Example 14 The statement 2 | 4 is true, while 4 | 2 is not.

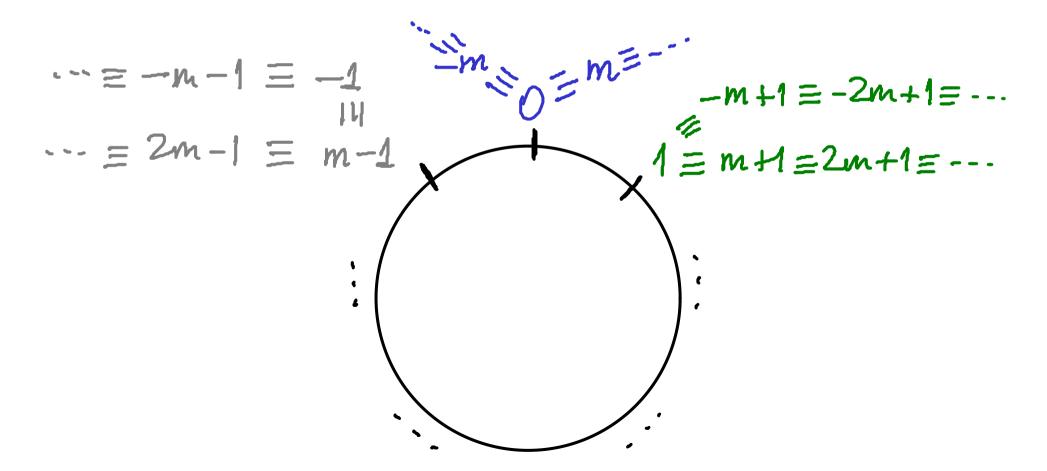
Definition 15 Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m, and write $a \equiv b \pmod{m}$, whenever $m \mid (a - b)$.

Example 16

- **1.** $18 \equiv 2 \pmod{4}$
- **2.** $2 \equiv -2 \pmod{4}$
- *3.* $18 \equiv -2 \pmod{4}$







Proposition 17 For every integer n,

1. n is even if, and only if, $n \equiv 0 \pmod{2}$, and

2. n is odd if, and only if, $n \equiv 1 \pmod{2}$.

PROOF:

The use of bi-implications:

To use an assumption of the form P \iff Q, use it as two separate assumptions P \implies Q and Q \implies P.