IMPLICATIONS

How to prove them as goals.

How to use them as assumptions.

Implication

Theorems can usually be written in the form

if a collection of assumptions holds,then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of *hypotheses* \implies some *conclusion*

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

HOW TO PROVE IMPLICATION GOALS

The main proof strategy for implication:

To prove a goal of the form

$$P \implies Q$$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Proof pattern:

In order to prove that

$$P \implies Q$$

- 1. Write: Assume P.
- 2. Show that Q logically follows.

Scratch work:

Before using the strategy

Assumptions

Goal

 $\mathsf{P} \implies \mathsf{Q}$

i

After using the strategy

Assumptions

Goal

Q

i

P

Proposition 8 If m and n are odd integers, then so is $m \cdot n$.

PROOF:

Assume in and in ore odd integers

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the *contrapositive* of 'P implies Q' is 'not Q implies not P'

WARNING

It is a frequent mistake for students to mix up and instead prove

the negation of P implies the negation of Q

So be very coreful when using this technique!

Proof pattern:

In order to prove that

$$P \implies Q$$

- 1. Write: We prove the contrapositive; that is, ... and state the contrapositive.
- 2. Write: Assume 'the negation of Q'.
- 3. Show that 'the negation of P' logically follows.

Scratch work:

Before using the strategy

Assumptions

Goal

 $P \implies Q$

i

After using the strategy

Assumptions

Goal

not P

i

not Q

Definition 9 A real number is:

- ► rational if it is of the form m/n for a pair of integers m and n; otherwise it is irrational.
- ▶ positive if it is greater than 0, and negative if it is smaller than 0.
- ► nonnegative if it is greater than or equal 0, and nonpositive if it is smaller than or equal 0.
- natural if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} .

Assume x is irrational, i.e, it connot be expressed as a fraction.

RTP: Va connot be expressed as a fraction.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} .

PROOF: Let x be à positive real number. We equivalently prove, by The contrapositive, That if Tx is rational then x is rational. Assume Ta is rational; That is, of the form m/n for some integers m and n. Then, $x = m^2/n^2$ is a fraction, and hence rational.

HOW TO USE IMPLICATION ASSUMPTIONS

Logical Deduction — Modus Ponens —

A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and P \Longrightarrow Q, the statement Q follows.

or, in other words,

If P and P \Longrightarrow Q hold then so does Q.

or, in symbols,

$$\frac{P \qquad P \Longrightarrow Q}{Q}$$

The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P.

Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let P_1 , P_2 , and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

PROOF: Let P1, P2, P3 be statements.

Assume: (1) P1=>P2

(2) P2 => P3

RTP: P1 => P3

Assume: (3) P1

RTP: P3

From a) U(3), ky MP, me deduce (4) P2.

From (4) &(2), by MP, we deduce P3.

Theorem For P.Q, and R statements,

$$(P\Rightarrow Q)\Rightarrow [(P\Rightarrow (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)]$$

PROOF: