# Proofs

# Objectives

- To develop techniques for analysing and understanding mathematical statements.
- ► To be able to present logical arguments that establish mathematical statements in the form of clear proofs.
- To prove Fermat's Little Theorem, a basic result in the theory of numbers that has many applications in computer science.

# Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.

# Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

- ▶ what a statement is;
- ▶ what the integers (..., -1, 0, 1, ...) are, and that amongst them there is a class of odd ones (..., -3, -1, 1, 3, ...);
- what the product of two integers is, and that this is in turn an integer.

More precisely put, we may write:

If m and n are odd integers then so is  $m \cdot n$ .

More precisely put, we may write:

If m and n are odd integers then so is  $m \cdot n$ .

which further presupposes that you know:

► what variables are;

► what

if ... then ...

statements are, and how one goes about proving them;

► that the symbol "·" is commonly used to denote the product operation.

Even more precisely, we should write

For all integers m and n, if m and n are odd then so is  $m \cdot n$ .

which now additionally presupposes that you know:

► what

## for all . . .

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of *mathematical jargon* that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.

# Some mathematical jargon

#### **Statement**

A sentence that is either true or false — but not both.

Example 1

$$e^{i\pi} + 1 = 0'$$

Non-example

'This statement is false'

-21 -

## **Predicate**

A statement whose truth depends on the value of one or more variables.

#### Example 2

1.

2.

$$e^{ix} = \cos x + i \sin x'$$

*'the function* **f** *is differentiable'* 

#### Theorem

A very important true statement.

# **Proposition**

A less important but nonetheless interesting true statement.

#### Lemma

A true statement used in proving other true statements.

## Corollary

A true statement that is a simple deduction from a theorem or proposition.

## **Example 3**

1.

2.

Fermat's Last Theorem

The Pumping Lemma

## Proof

Logical explanation of why a statement is true; a method for establishing truth.

## Proof

Logical explanation of why a statement is true; a method for establishing truth.

## Logic

The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

## Example 5

| 1. | Classical predicate logic |
|----|---------------------------|
| 2. | Hoare logic               |
| З. | Temporal logic            |

#### Axiom

#### A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

#### Example 6

| 1. | Euclidean Geometry  |
|----|---------------------|
| 2. | Riemannian Geometry |
| З. | Hyperbolic Geometry |

## Definition

An explanation of the mathematical meaning of a word (or phrase).

The word (or phrase) is generally defined in terms of properties.

**Warning:** It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.

# Definition, theorem, intuition, proof in practice

**Proposition 8** For all integers m and n, if m and n are odd then so is  $m \cdot n$ .

-31 -

# Definition, theorem, intuition, proof in practice

**Definition 7** An integer is said to be <u>odd</u> whenever it is of the form  $2 \cdot i + 1$  for some (necessarily unique) integer *i*.

**Proposition 8** For all integers m and n, if m and n are odd then so is  $m \cdot n$ .

# How to solve it by G. Polya

- ► You have to understand the problem.
- ► Devising a plan.

Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.

- ► Carry out your plan.
- Looking back.

Examine the solution obtained.





PROOF OF Proposition 8: Let mand n be odd integeres. That is, m=2it for some integer i and n=2jt for an integer j. Thu,  $m \cdot n = 2(2ij+i+j)+1$  and Therefore of the form 2k+1 (for k= zij+i+j). Hence on odd Meger. []

## Simple and composite statements

A statement is <u>simple</u> (or <u>atomic</u>) when it cannot be broken into other statements, and it is <u>composite</u> when it is built by using several (simple or composite statements) connected by *logical* expressions (e.g., if...then...; ...implies ...; ...if and only if ...; ...and...; either ... or ...; it is not the case that ...; for all ...; there exists ...; etc.)

#### **Examples:**

#### '2 is a prime number'

'for all integers m and n, if  $m \cdot n$  is even then either n or m are even'

STRUCTURE PROOF

Assumptions statements That may be used for deduction

Gods

statements to be established