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Digital Electronics:

Sequential Logic

Synchronous State Machines 2

State Assignment

• As we have mentioned previously, state 
assignment is not necessarily obvious or 
straightforward

– Depends what we are trying to optimise, e.g.,
• Complexity (which also depends on the 

implementation technology, e.g., FPGA,  74 series 
logic chips). 

– FF implementation may take less chip area than you may 
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’ 
state assignment, but are not suitable for manual 
execution



26/08/2020

2

State Assignment

• If we have m states, we need at least            

FFs (or more informally, bits) to encode the 

states, e.g., for 8 states we need a min of 3 

FFs

• We will now present an example giving 

various potential state assignments, some 

using more FFs than the minimum

m2log

Example Problem

• We wish to investigate some state 
assignment options to implement a divide by 
5 counter which gives a 1 output for 2 clock 
edges and is 0 for 3 clock edges

CLK

Output
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Sequential State Assignment

• Here we simply assign the states in an 
increasing natural binary count

• As usual we need to write down the 
state transition table. In this case we 
need 5 states, i.e., a minimum of 3 FFs 
(or state bits). We will designate the 3 
FF outputs as c, b, and a

• We can then determine the necessary 
next state logic and any output logic.

Sequential State Assignment

Unused states, 101, 

110 and 111.

Current 

state

abc

000
100
010

abc

1
0
1

0
1
1

0
0
0

110 001

Next 

state

001 000

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the 

next state logic:

For FF a:

b a
1100 01 10

0

1

11

Xc X X

c

a

b

ca.

caDa .
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Sequential State Assignment

Unused states, 101, 

110 and 111.

Current 

state

abc

000
100
010

abc

1
0
1

0
1
1

0
0
0

110 001

Next 

state

001 000

For FF b:

b a
1100 01 10

0

1

1

Xc X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:

b a
1100 01 10

0

1

1

Xc X X

c

a

b

ba.

baDc .

Sliding State Assignment

Unused states, 010, 

101, and 111.

Current 

state

abc

000
100
110

abc

1
1
0

0
1
1

0
0
1

011 001

Next 

state

001 000

For FF a:

b a
1100 01 10

0

1

11

Xc X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the 

next state logic:

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output
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Sliding State Assignment

Unused states, 010, 

101, and 111.

Current 

state

abc

000
100
110

abc

1
1
0

0
1
1

0
0
1

011 001

Next 

state

001 000

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 

Shift Register Assignment

• As the name implies, the FFs are connected 

together to form a shift register. In addition, 

the output from the final shift register in the 

chain is connected to the input of the first 

FF:

– Consequently the data continuously cycles 

through the register
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Shift Register Assignment

Unused states. Lots!

Current 

state

a

1
0
0

0

Next 

state

1

bc

10
11
01

00
00

abc

0
0
0

1
0
0

1
1
0

100
110

0
0
1

1
0

de

0
0
0

1
1

0
1
1

0
0

d e

0
0
1

1
0

Because of the shift register 

configuration and also from the 

state table we can see that:

eDa 

aDb 
bDc 
cDd 
dDe 

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

• This is a shift register design style where only 

one FF at a time holds a 1

• Consequently we have 1 FF per state, 

compared with          for sequential assignment

• However, can result in simple fast state 

machines

• Outputs are generated by ORing together 

appropriate FF outputs

m2log
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One Hot - Example

• We will return to the traffic signal example, 

which recall has 4 states

R

R

G

AA

For 1 hot, we need 1 FF for 

each state, i.e., 4 in this case

The FFs are connected to form 

a shift register as in the 

previous shift register example, 

however in 1 hot, only 1 FF 

holds a 1 at any time

We can write down the state 

transition table as follows

One Hot - Example

R

R

G

AA

Unused states. Lots!

Current 

state

Next 

state

a

0
0
0

1

g

0
0
1

0

ra

0
1
0

0

1
0
0

0

r a

0
0
1

0

g

0
1
0

0

ar 

1
0
0

0

0
0
0

1

r

Because of the shift register configuration 

and also from the state table we can see 

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 
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One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G

Tripos Example
• The state diagram for a synchroniser is shown. 

It has 3 states and 2 inputs, namely e and r. 

The states are mapped using sequential 

assignment as shown. 

[s1 s0]

FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be 

true if in Sync state
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Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current 

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next 

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11
From inspection, 1ss 

Tripos Example
Plot k-maps to determine the 

next state logic

Current 

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next 

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11

For FF 1:

1100 01 10

00

01

11

10

01 ss
re 

1
1s

0s

e

r

1

1

res ..0

es .1

X XX X

1

rs .1

resrsesD .... 0111 
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Tripos Example
Plot k-maps to determine the 

next state logic

Current 

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next 

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11

For FF 0:

1100 01 10

00

01

11

10

01 ss
re 

1

1s

0s

e

r

1

1
rss .. 01

es .0

X XX X

1

rssesD ... 0100 

Tripos Example

• We will now re-implement the synchroniser 

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]

FF labels

An output, s should be 

true if in Sync state

From inspection, 2ss 
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Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current 

state

re

0X
1X

'
2s

0
0

Next 

state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it 

is straightforward to write down the next state equations

Tripos Example

Current 

state

re

0X
1X

'
2s

0
0

Next 

state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

For FF 2:

resesresD ..... 2212 

For FF 1:

esrsD .. 101 

For FF 0:

resresrsD ..... 2100 
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Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly 

necessary to write down the 

state table, since the next state 

equations can be obtained from 

the state diagram

It can be seen that for each 

state variable, the required 

equation is given by terms 

representing the incoming arcs 

on the graph

For example, for FF 2: resesresD ..... 2212 

Also note some simplification is possible by noting that: 

1012  sss (which is equivalent to e.g.,                      )012 sss 

Tripos Example

• So in this example, the 1 hot is easier to 

design, but it results in more hardware 

compared with the sequential state 

assignment design


