Digital Electronics: Sequential Logic

Synchronous State Machines 2

State Assignment

- As we have mentioned previously, state assignment is not necessarily obvious or straightforward
 - Depends what we are trying to optimise, e.g.,
 - Complexity (which also depends on the implementation technology, e.g., FPGA, 74 series logic chips).
 - FF implementation may take less chip area than you may think given their gate level representation
 - Wiring complexity can be as big an issue as gate complexity
 - Speed
 - Algorithms do exist for selecting the 'optimising' state assignment, but are not suitable for manual execution

State Assignment

- If we have *m* states, we need at least log₂*m* FFs (or more informally, bits) to encode the states, e.g., for 8 states we need a min of 3
 FFs
- We will now present an example giving various potential state assignments, some using more FFs than the minimum

Sequential State Assignment

- Here we simply assign the states in an increasing natural binary count
- As usual we need to write down the state transition table. In this case we need 5 states, i.e., a minimum of 3 FFs (or state bits). We will designate the 3 FF outputs as *c*, *b*, and *a*
- We can then determine the necessary next state logic and any output logic.

