
26/08/2020

1

Digital Electronics:

Sequential Logic

Synchronous State Machines 2

State Assignment

• As we have mentioned previously, state
assignment is not necessarily obvious or
straightforward

– Depends what we are trying to optimise, e.g.,
• Complexity (which also depends on the

implementation technology, e.g., FPGA, 74 series
logic chips).

– FF implementation may take less chip area than you may
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

26/08/2020

2

State Assignment

• If we have m states, we need at least

FFs (or more informally, bits) to encode the

states, e.g., for 8 states we need a min of 3

FFs

• We will now present an example giving

various potential state assignments, some

using more FFs than the minimum

m2log

Example Problem

• We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is 0 for 3 clock edges

CLK

Output

26/08/2020

3

Sequential State Assignment

• Here we simply assign the states in an
increasing natural binary count

• As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

• We can then determine the necessary
next state logic and any output logic.

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

000
100
010

abc

1
0
1

0
1
1

0
0
0

110 001

Next

state

001 000

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the

next state logic:

For FF a:

b a
1100 01 10

0

1

11

Xc X X

c

a

b

ca.

caDa .

26/08/2020

4

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

000
100
010

abc

1
0
1

0
1
1

0
0
0

110 001

Next

state

001 000

For FF b:

b a
1100 01 10

0

1

1

Xc X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:

b a
1100 01 10

0

1

1

Xc X X

c

a

b

ba.

baDc .

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

000
100
110

abc

1
1
0

0
1
1

0
0
1

011 001

Next

state

001 000

For FF a:

b a
1100 01 10

0

1

11

Xc X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the

next state logic:

By inspection we can see that

we can use any of the FF

outputs as the wanted output

26/08/2020

5

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

000
100
110

abc

1
1
0

0
1
1

0
0
1

011 001

Next

state

001 000

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 

Shift Register Assignment

• As the name implies, the FFs are connected

together to form a shift register. In addition,

the output from the final shift register in the

chain is connected to the input of the first

FF:

– Consequently the data continuously cycles

through the register

26/08/2020

6

Shift Register Assignment

Unused states. Lots!

Current

state

a

1
0
0

0

Next

state

1

bc

10
11
01

00
00

abc

0
0
0

1
0
0

1
1
0

100
110

0
0
1

1
0

de

0
0
0

1
1

0
1
1

0
0

d e

0
0
1

1
0

Because of the shift register

configuration and also from the

state table we can see that:

eDa 

aDb 
bDc 
cDd 
dDe 

By inspection we can see that

we can use any of the FF

outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

• This is a shift register design style where only

one FF at a time holds a 1

• Consequently we have 1 FF per state,

compared with for sequential assignment

• However, can result in simple fast state

machines

• Outputs are generated by ORing together

appropriate FF outputs

m2log

26/08/2020

7

One Hot - Example

• We will return to the traffic signal example,

which recall has 4 states

R

R

G

AA

For 1 hot, we need 1 FF for

each state, i.e., 4 in this case

The FFs are connected to form

a shift register as in the

previous shift register example,

however in 1 hot, only 1 FF

holds a 1 at any time

We can write down the state

transition table as follows

One Hot - Example

R

R

G

AA

Unused states. Lots!

Current

state

Next

state

a

0
0
0

1

g

0
0
1

0

ra

0
1
0

0

1
0
0

0

r a

0
0
1

0

g

0
1
0

0

ar 

1
0
0

0

0
0
0

1

r

Because of the shift register configuration

and also from the state table we can see

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 

26/08/2020

8

One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G

Tripos Example
• The state diagram for a synchroniser is shown.

It has 3 states and 2 inputs, namely e and r.

The states are mapped using sequential

assignment as shown.

[s1 s0]

FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be

true if in Sync state

26/08/2020

9

Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11
From inspection, 1ss 

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11

For FF 1:

1100 01 10

00

01

11

10

01 ss
re

1
1s

0s

e

r

1

1

res ..0

es .1

X XX X

1

rs .1

resrsesD 0111 

26/08/2020

10

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0X
1X

'
1s

'
0s

0
1

0
0

Next

state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101

XX XX11

For FF 0:

1100 01 10

00

01

11

10

01 ss
re

1

1s

0s

e

r

1

1
rss .. 01

es .0

X XX X

1

rssesD ... 0100 

Tripos Example

• We will now re-implement the synchroniser

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]

FF labels

An output, s should be

true if in Sync state

From inspection, 2ss 

26/08/2020

11

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current

state

re

0X
1X

'
2s

0
0

Next

state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it

is straightforward to write down the next state equations

Tripos Example

Current

state

re

0X
1X

'
2s

0
0

Next

state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

For FF 2:

resesresD 2212 

For FF 1:

esrsD .. 101 

For FF 0:

resresrsD 2100 

26/08/2020

12

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly

necessary to write down the

state table, since the next state

equations can be obtained from

the state diagram

It can be seen that for each

state variable, the required

equation is given by terms

representing the incoming arcs

on the graph

For example, for FF 2: resesresD 2212 

Also note some simplification is possible by noting that:

1012  sss (which is equivalent to e.g.,)012 sss 

Tripos Example

• So in this example, the 1 hot is easier to

design, but it results in more hardware

compared with the sequential state

assignment design

