Digital Electronics: Sequential Logic

Synchronous State Machines 2

State Assignment

- As we have mentioned previously, state assignment is not necessarily obvious or straightforward
- Depends what we are trying to optimise, e.g.,
- Complexity (which also depends on the implementation technology, e.g., FPGA, 74 series logic chips).
- FF implementation may take less chip area than you may think given their gate level representation
- Wiring complexity can be as big an issue as gate complexity
- Speed
- Algorithms do exist for selecting the 'optimising' state assignment, but are not suitable for manual execution

State Assignment

- If we have m states, we need at least $\log _{2} m$ FFs (or more informally, bits) to encode the states, e.g., for 8 states we need a min of 3 FFs
- We will now present an example giving various potential state assignments, some using more FFs than the minimum

Example Problem

- We wish to investigate some state assignment options to implement a divide by 5 counter which gives a 1 output for 2 clock edges and is 0 for 3 clock edges

Sequential State Assignment

- Here we simply assign the states in an increasing natural binary count
- As usual we need to write down the state transition table. In this case we need 5 states, i.e., a minimum of 3 FFs (or state bits). We will designate the 3 FF outputs as c, b, and a
- We can then determine the necessary next state logic and any output logic.

Sequential State Assignment

Current state	Next state	By inspection we can see: The required output is from FF b
$c b a$	$c^{\prime} b^{\prime} a^{\prime}$	Plot k-maps to determine the
000	$\begin{array}{lll}0 & 0 & 1\end{array}$	next state logic:
001	$\begin{array}{llll}0 & 1 & 0\end{array}$	
010	011	For FF a :
011	100	$>^{b a}$
100	000	00001110
		0 1 1
Unused states, 101,		$c \|$1 X X
110 and 111.		$\frac{\square}{b}$

$$
D_{a}=\bar{a} \cdot \bar{c}
$$

Sequential State Assignment

For FF b :

Current state		c Next state			
c	b	a	c^{\prime}	b^{\prime}	a^{\prime}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

For FF c :

Unused states, 101, 110 and 111.

$$
D_{c}=a \cdot b
$$

Sliding State Assignment

Current Next By inspection we can see that state state we can use any of the FF

c	b	a	c^{\prime}	b^{\prime}	a^{\prime}	outputs as the wanted output		
0	0	0	0	0	1		\quad	Plot k-maps to determine the
:---								

0	0	1	0	1	1	next state logic:

0	1	1	1	1	0
1	1	0	1	0	0

1	0	0	0	0	0

For FF a :

Unused states, 010, 101, and 111.

$$
D_{a}=\bar{b} \cdot \bar{c}
$$

Sliding State Assignment

Current state	Next state	By inspection we can see that: For FF b :
$c \quad b a$	$c^{\prime} b^{\prime} a^{\prime}$	$D_{b}=a$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & \end{array}$	$\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1\end{array}$	For FF c :
$\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1\end{array}$	
011	110	$D_{c}=b$
110	100	
100	000	

Unused states, 010, 101, and 111.

Shift Register Assignment

- As the name implies, the FFs are connected together to form a shift register. In addition, the output from the final shift register in the chain is connected to the input of the first FF:
- Consequently the data continuously cycles through the register

Shift Register Assignment

Current Next Because of the shift register
state state configuration and also from the

e	d	c	b	a	e^{\prime}	d^{\prime}	c^{\prime}	b^{\prime}	a^{\prime}
0	0	0	1	1	0	0	1	1	0
0	0	1	1	0	0	1	1	0	0
0	1	1	0	0	1	1	0	0	0
1	1	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	0	1	1

Unused states. Lots! state table we can see that:
$D_{a}=e$
$D_{b}=a$
$D_{c}=b$
$D_{d}=c$
$D_{e}=d$
By inspection we can see that we can use any of the FF outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

- This is a shift register design style where only one FF at a time holds a 1
- Consequently we have 1 FF per state, compared with $\log _{2} m$ for sequential assignment
- However, can result in simple fast state machines
- Outputs are generated by ORing together appropriate FF outputs

One Hot - Example

- We will return to the traffic signal example, which recall has 4 states

For 1 hot, we need 1 FF for each state, i.e., 4 in this case The FFs are connected to form a shift register as in the previous shift register example, however in 1 hot, only 1 FF holds a 1 at any time
We can write down the state transition table as follows

Tripos Example

- The state diagram for a synchroniser is shown. It has 3 states and 2 inputs, namely e and r.
The states are mapped using sequential assignment as shown.

Tripos Example

Unused state 11
From inspection, $s=s_{1}$

Current Input Next
state state

s_{1}	s_{0}	e	r	s_{1}^{\prime}	s_{0}^{\prime}
0	0	X	0	0	0
0	0	X	1	0	1
0	1	0	X	0	1
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	X	1	0
1	0	1	0	0	0
1	0	1	1	1	0
1	1	X	X	X	X

Tripos Example

Curren state	Input	Next state
$s_{1} s_{0}$		$s_{1} s_{0}$
00		0
00	X 1	0
01		01
01	10	00
01	11	
10	0 X	10
10	10	00
10	11	10
11	X X	X X

Plot k-maps to determine the next state logic For FF 1:

Tripos Example

Current Input Next
state state

s_{1}	s_{0}	e	r	s_{1}	s_{0}
0	0	X	0	0	0
0	0	X	1	0	1
0	1	0	X	0	1
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	X	1	0
1	0	1	0	0	0
1	0	1	1	1	0
1	1	X	X	X	X

Plot k-maps to determine the next state logic
For FF 0:

Tripos Example

- We will now re-implement the synchroniser using a 1 hot approach
- In this case we will need 3 FFs

FF labels
[$s_{2} s_{1} s_{0}$]

An output, s should be true if in Sync state From inspection, $s=s_{2}$

Tripos Example

Remember when interpreting this table, because of the 1hot shift structure, only 1 FF is 1 at a time, consequently it is straightforward to write down the next state equations

Tripos Example

Current Input
state state

s_{2}	s_{1}	s_{0}	e	e	r	s_{2}^{\prime}	s_{1}^{\prime}
0	s_{0}^{\prime}						
0	0	1	X	0	0	0	1
0	0	1	X	1	0	1	0
0	1	0	0	X	0	1	0
0	1	0	1	0	0	0	1
0	1	0	1	1	1	0	0
1	0	0	0	X	1	0	0
1	0	0	1	0	0	0	1
1	0	0	1	1	1	0	0

For FF 2:

$$
D_{2}=s_{1} \cdot e . r+s_{2} \cdot \bar{e}+s_{2} . e . r
$$

For FF 1 :

$$
D_{1}=s_{0} \cdot r+s_{1} \cdot \bar{e}
$$

For FF 0 :

$$
D_{0}=s_{0} \cdot \bar{r}+s_{1} \cdot e \cdot \bar{r}+s_{2} \cdot e \cdot \bar{r}
$$

Tripos Example

Note that it is not strictly necessary to write down the state table, since the next state equations can be obtained from the state diagram It can be seen that for each state variable, the required equation is given by terms representing the incoming arcs on the graph
For example, for FF 2: $\quad D_{2}=s_{1}$.e. $r+s_{2} . \bar{e}+s_{2}$.e.r
Also note some simplification is possible by noting that:
$s_{2}+s_{1}+s_{0}=1$ (which is equivalent to e.g., $s_{2}=\overline{s_{1}+s_{0}}$)

Tripos Example

- So in this example, the 1 hot is easier to design, but it results in more hardware compared with the sequential state assignment design

