Digital Electronics: Sequential Logic

Synchronous State Machines 1

Introduction

- We have seen how we can use FFs (D-types in particular) to design synchronous counters
- We will now investigate how these principles can be extended to the design of synchronous state machines (of which counters are a subset)
- We will begin with some definitions and then introduce two popular types of machines

Definitions

- Finite State Machine (FSM) a deterministic machine (circuit) that produces outputs which depend on its internal state and external inputs
- **States** the set of internal memorised values, shown as circles on the state diagram
- Inputs External stimuli, labelled as arcs on the state diagram
- Outputs Results from the FSM

Moore Machine - Example

- We will design a Moore Machine to implement a traffic light controller
- In order to visualise the problem it is often helpful to draw the state transition diagram
- This is used to generate the state transition table
- The state transition table is used to generate
 The next state combinational logic
 - The output combinational logic (if required)

Example – Traffic Light Controller

Current	Next
state	state
R A G	R'A'G'
1 0 0	1 1 0
1 1 0	0 0 1
001	0 1 0
0 1 0	100

Unused states, 000, 011, 101 and 111.

We now need to determine the next state combinational logic

For the *R* FF, we need to determine D_R

To do this we will use a K-map

$$D_R = R.\overline{A} + \overline{R}A = R \oplus A$$

Example – Traffic Light Controller

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
Unused states, 000.
011, 101 and 111.

- If not, add additional logic to do this, i.e., include unused states in the state transition table along with a valid next state
- Alternatively use asynchronous Clear and Preset FF inputs to set a known (used) state at power up

- We extend Example 1 so that the traffic signals spend extra time for the *R* and *G* lights
- Essentially, we need 2 additional states, i.e., 6 in total.
- In theory, the 3 FF machine gives us the potential for sufficient states
- However, to make the machine combinational logic easier, it is more convenient to add another FF (labelled *S*), making 4 in total

Current state	E Next state	EXAMPLE 2 We can plot k-maps for D_A and D_G
R A G S	R'A'G'S'	to give:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_A = R.S + G.\overline{S} \text{or} \\ D_A = R.S + \overline{R}.\overline{S} = \overline{R \oplus S} \\ D_G = R.A + G.S \text{or} \\ D_G = G.S + A.\overline{S} \\ \text{By inspection we can also see:} \\ D_S = \overline{S} \\ \end{array}$