Digital Electronics:
Electronics, Devices and Circuits

Dr. I. J. Wassell

Digital Electronics:
Electronics, Devices and Circuits Underlying Concepts

Introduction

- In the coming lectures we will consider how logic gates can be built using electronic circuits
- First, basic concepts concerning electrical circuits and components will be introduced
- This will enable the analysis of linear circuits, i.e., one where superposition applies:
- If an input $x_{1}(t)$ gives an output $y_{1}(t)$, and input $x_{2}(t)$ gives an output $y_{2}(t)$, then input $\left[x_{1}(t)+x_{2}(t)\right]$ gives an output $\left[y_{1}(t)+y_{2}(t)\right]$

Introduction

- However, logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits
- Semiconductor materials, metal oxide field effect transistors (MOSFET) will be introduced
- Building an NMOS inverter from an n-channel (MOSFET) will be described
- CMOS logic built using MOSFETs will be presented
- Finally, we will look at interfacing to the analogue world

Basic Electricity

- An electric current is produced when charged particles (e.g., electrons in metals, or electrons and ions in a gas or liquid) move in a definite direction
- In metals, the outer electrons are held loosely by their atoms and are free to move around the fixed positive metal ions
- This free electron motion is random, and so there is no net flow of charge in any direction, i.e., no current flow

Basic Electricity

- If a metal wire is connected across the terminals of a battery, the battery acts as an 'electron pump' and forces the free electrons to drift toward the +ve terminal and in effect flow through the battery
- The drift speed of the free electrons is low, e.g., < 1 mm per second owing to frequent collisions with the metal ions.
- However, they all start drifting together as soon as the battery is applied

Basic Electricity

- The flow of electrons in one direction is known as an electric current and reveals itself by making the metal warmer and by deflecting a nearby magnetic compass

Flow of electrons in metal wire connected across a battery

- Before electrons were discovered it was imagined that the flow of current was due to positively charged particles flowing out of +ve toward -ve battery terminal

Basic Electricity

- Note that 'conventional' current flow is still defined as flowing from the +ve toward the ve battery terminal (i.e., the opposite way to the flow of the electrons in the metal)!
- A huge number of charged particles (electrons in the case of metals) drift past each point in a circuit per second.
- The unit of charge is the Coulomb (C) and one electron has a charge of $1.6 * 10^{-19} \mathrm{C}$

Basic Electricity

- Thus one C of charge is equivalent to $6.25 * 10^{18}$ electrons
- When one C of charge passes a point in a circuit per second, this is defined as a current (I) of 1 Ampere (A), i.e., $I=Q / t$, where Q is the charge (C) and t is time in seconds (s), i.e., current is the rate of flow of charge.

Basic Electricity

- In the circuit shown below, it is the battery that supplies the electrical force and energy that drives the electrons around the circuit.

- The electromotive force (emf) V_{B} of a battery is defined to be 1 Volt (V) if it gives 1 Joule (J) of electrical energy to each C of charge passing through it.

Basic Electricity

- The lamp in the previous circuit changes most of the electrical energy carried by the free electrons into heat and light
- The potential difference (pd) V_{L} across the lamp is defined to be 1 Volt (V) if it changes 1 Joule (J) of electrical energy into other forms of energy (e.g., heat and light) when 1 C of charge passes through it, i.e., $V_{L}=E / Q$, where E is the energy dissipated (J) and Q is the charge (C)

Basic Electricity

- Note that pd and emf are usually called voltages since both are measured in V
- The flow of electric charge in a circuit is analogous to the flow of water in a pipe. Thus a pressure difference is required to make water flow - To move electric charge we consider that a pd is needed, i.e., whenever there is a current flowing between 2 points in a circuit there must be a pd between them

Basic Electricity

- What is the power dissipated $\left(P_{\mathrm{L}}\right)$ in the lamp in the previous circuit?
- $P_{\mathrm{L}}=E / t(\mathrm{~J} / \mathrm{s})$. Previously we have, $E=Q V_{\mathrm{L}}$, and so, $P_{\mathrm{L}}=Q V_{\mathrm{L}} / t(\mathrm{~W})$.
- Now substitute $Q=I t$ from before to give, $P_{\mathrm{L}}=I t V_{\mathrm{L}} / t=I V_{\mathrm{L}}(\mathrm{W})$, an expression that hopefully is familiar

Basic Electricity

- So far, we have only considered metallic conductors where the charge is carried by 'free' electrons in the metal lattice.
- We will now consider the electrical properties of some other materials, specifically, insulators and semiconductors

Basic Materials

- The electrical properties of materials are central to understanding the operation of electronic devices
- Their functionality depends upon our ability to control properties such as their currentvoltage characteristics
- Whether a material is a conductor or insulator depends upon how strongly bound the outer valence electrons are to their atomic cores

Insulators

- Consider a crystalline insulator, e.g., diamond
- Electrons are strongly bound and unable to move
- When a voltage difference is applied, the crystal will distort a bit, but no charge (i.e., electrons) will flow until breakdown occurs

Conductors

- Consider a metal conductor, e.g., copper
- Electrons are weakly bound and free to move
- When a voltage difference is applied, the crystal will distort a bit, but charge (i.e., electrons) will flow

Semiconductors

- Since there are many free electrons in a metal, it is difficult to control its electrical properties
- Consequently, what we need is a material with a low electron density, i.e., a semiconductor, e.g., Silicon
- By carefully controlling the electron density we can create a whole range of electronic devices

Semiconductors

- We can create n-type silicon (Group 4) by doping with arsenic (Group V) that donates an additional electron
- This electron is free to move around the silicon lattice
- Owing to its negative charge, the resulting semiconductor is known as n-type

Semiconductors

- Similarly we can create p-type silicon (Group 4) by doping with Boron (Group 3) that accepts an additional electron
- This leaves a hole (i.e., absence of a valence electron) in the lattice
- This hole is free to move in the lattice - actually it is the electrons in the lattice that do the shifting, but the net result is that the hole is shuffled from atom to atom.
- The free hole has a positive charge, hence this semiconductor is p-type

Semiconductors

- The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices that are used to implement virtually all digital logic circuits are fabricated from n and p type silicon
- Later on, we will see how MOSFETs can be used to implement digital logic circuits

Circuit Theory

- Electrical engineers have an alternative (but essentially equivalent) view concerning pd.
- That is, conductors, to a greater or lesser extent, oppose the flow of current. This 'opposition' is quantified in terms of resistance (R). Thus the greater is the resistance, the larger is the potential difference measured across the conductor (for a given current).

Circuit Theory

- The resistance (R) of a conductor is defined as $R=V / I$, where V is the pd across the conductor and I is the current through the conductor.
- This is know as Ohms Law and is usually expressed as $V=I R$, where resistance is defined to be in Ohms (Ω).
- So for an ohmic (i.e., linear) conductor, plotting I against V yields a straight line through the origin

Circuit Theory

- Conductors made to have a specific value of resistance are known as resistors.
- They have the following symbol in an electrical circuit:

- Analogy:
- The flow of electric charges can be compared with the flow of water in a pipe.
- A pressure (voltage) difference is needed to make water (charges) flow in a pipe (conductor).

Circuit Theory

- Kirchhoff's Current Law - The sum of currents entering a junction (or node) is zero, e.g.,

- That is, what goes into the junction is equal to what comes out of the junction - Think water pipe analogy again!

Circuit Theory

- Kirchhoff's Voltage Law - In any closed loop of an electric circuit the sum of all the voltages in that loop is zero, e.g.,

- We will now analyse a simple 2 resistor circuit known as a potential divider

Potential Divider

- What is the voltage at point x relative to the OV point?

Note: circle represents an ideal voltage source,
i.e., a perfect battery

$$
\begin{aligned}
& V=V_{1}+V_{2} \\
& V_{1}=I R_{1} \quad V_{2}=I R_{2} \\
& V=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right) \\
& I=\frac{V}{\left(R_{1}+R_{2}\right)}
\end{aligned}
$$

.u., apuriver natiory
\qquad

$$
V_{x}=V_{2}=\frac{V}{\left(R_{1}+R_{2}\right)} R_{2}=V\left(\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

Solving Non-linear circuits

- As mentioned previously, not all electronic devices have linear I-V characteristics, importantly in our case this includes the FETs used to build logic circuits
- Consequently we cannot easily use the algebraic approach applied previously to the potential divider. Instead, we will use a graphical approach
- Firstly though, we will apply the graphical approach to the potential divider example

Potential Divider

- How can we do this graphically?

Graphical Approach

- Clearly approach works for a linear circuit.
- How could we apply this if we have a nonlinear device, e.g., a transistor in place of R_{2} ?
- What we do is substitute the V-I characteristic of the non-linear device in place of the linear characteristic (a straight line due to Ohm's Law) used previously for R_{2}

Graphical Approach

