Digital Electronics: Combinational Logic

Logic Minimisation

Introduction

- Any Boolean function can be implemented directly using combinational logic (gates)
- However, simplifying the Boolean function will enable the number of gates required to be reduced. Techniques available include:
- Algebraic manipulation (as seen in examples)
- Karnaugh (K) mapping (a visual approach)
- Tabular approaches (usually implemented by computer, e.g., Quine-McCluskey)
- K mapping is the preferred technique for up to about 5 variables

Truth Tables

- f is defined by the following truth table
- A minterm must contain

x	y	z	f	minterms
0	0	0	1	$\bar{x} \cdot \bar{y} \cdot \bar{z}$
0	0	1	1	$\bar{x} \overline{\bar{y}} \cdot z$
0	1	0	1	$\bar{x} \cdot y \cdot \bar{z}$
0	1	1	1	$\bar{x} \cdot y \cdot z$
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	$x \cdot y \cdot z$

- Note variables in a minterm are ANDed together (conjunction)
- One minterm for each term of f that is TRUE
- So $\bar{x} . y . z$ is a minterm but $y . z$ is not

Disjunctive Normal Form

- A Boolean function expressed as the disjunction (ORing) of its minterms is said to be in the Disjunctive Normal Form (DNF)

$$
f=\bar{x} \cdot \bar{y} \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot y \cdot z+x \cdot y \cdot z
$$

- A Boolean function expressed as the ORing of ANDed variables (not necessarily minterms) is often said to be in Sum of Products (SOP) form, e.g.,
$f=\bar{x}+y . z \quad$ Note functions have the same truth table

Maxterms

- A maxterm of n Boolean variables is the disjunction (ORing) of all the variables either in complemented or uncomplemented form.
- Referring back to the truth table for f, we can write,

$$
\bar{f}=x \cdot \bar{y} \cdot \bar{z}+x \cdot \bar{y} \cdot z+x \cdot y \cdot \bar{z}
$$

Applying De Morgan (and complementing) gives

$$
f=(\bar{x}+y+z) \cdot(\bar{x}+y+z) \cdot(\bar{x}+\bar{y}+z)
$$

So it can be seen that the maxterms of f are effectively the minterms of \bar{f} with each variable complemented

Conjunctive Normal Form

- A Boolean function expressed as the conjunction (ANDing) of its maxterms is said to be in the Conjunctive Normal Form (CNF)

$$
f=(\bar{x}+y+z) \cdot(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$

- A Boolean function expressed as the ANDing of ORed variables (not necessarily maxterms) is often said to be in Product of Sums (POS) form, e.g.,

$$
f=(\bar{x}+y) \cdot(\bar{x}+z)
$$

Logic Simplification

- As we have seen previously, Boolean algebra can be used to simplify logical expressions. This results in easier implementation
Note: The DNF and CNF forms are not simplified.
- However, it is often easier to use a technique known as Karnaugh mapping

Karnaugh Maps

- Karnaugh Maps (or K-maps) are a powerful visual tool for carrying out simplification and manipulation of logical expressions having up to 5 variables
- The K-map is a rectangular array of cells
- Each possible state of the input variables corresponds uniquely to one of the cells
- The corresponding output state is written in each cell

K-maps example

- From truth table to K-map

x	y	z	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Note that the logical state of the variables follows a Gray code, i.e., only one of them changes at a time

The exact assignment of variables in terms of their position on the map is not important

K-maps example

- Having plotted the minterms, how do we use the map to give a simplified expression?
- Group terms

- Having size equal to a power of 2, e.g., 2, 4, 8, etc.
- Large groups best since they contain fewer variables
- Groups can wrap around edges and corners
So, the simplified func. is,

$$
f=\bar{x}+y . z \quad \text { as before }
$$

K-maps - 4 variables

- K maps from Boolean expressions
- Plot $f=\bar{a} \cdot b+b \cdot \bar{c} \cdot \bar{d}$

- See in a 4 variable map:
- 1 variable term occupies 8 cells
-2 variable terms occupy 4 cells
-3 variable terms occupy 2 cells, etc.

K-maps - 4 variables

- For example, plot

$$
f=\bar{b}
$$

$$
f=\bar{b} \cdot \bar{d}
$$

K-maps - 4 variables

- Simplify, $f=\bar{a} . b . \bar{d}+b . c . d+\bar{a} . b . \bar{c} . d+c . d$

So, the simplified func. is,

$$
f=\bar{a} \cdot b+c \cdot d
$$

POS Simplification

- Note that the previous examples have yielded simplified expressions in the SOP form
- Suitable for implementations using AND followed by OR gates, or only NAND gates (using DeMorgans to transform the result see previous Bubble logic slides)
- However, sometimes we may wish to get a simplified expression in POS form
- Suitable for implementations using OR followed by AND gates, or only NOR gates

POS Simplification

- To do this we group the zeros in the map
- i.e., we simplify the complement of the function
- Then we apply DeMorgans and complement
- Use 'bubble’ logic if NOR only implementation is required

POS Example

- Simplify $f=\bar{a} \cdot b+b . \bar{c} \cdot \bar{d}$ into POS form.

POS Example

- Applying DeMorgans to

$$
\bar{f}=\bar{b}+a . c+a . d
$$ gives,

$$
\bar{f}=\overline{b \cdot(\bar{a}+\bar{c}) \cdot(\bar{a}+\bar{d})}
$$

$$
f=b \cdot(\bar{a}+\bar{c}) \cdot(\bar{a}+\bar{d})
$$

Expression in POS form

- Apply DeMorgans and take complement, i.e., \bar{f} is now in SOP form
- Fill in zeros in table, i.e., plot \bar{f}
- Fill remaining cells with ones, i.e., plot f
- Simplify in usual way by grouping ones to simplify f

Don't Care Conditions

- Sometimes we do not care about the output value of a combinational logic circuit, i.e., if certain input combinations can never occur, then these are known as don't care conditions.
- In any simplification they may be treated as 0 or 1 , depending upon which gives the simplest result.
- For example, in a K-map they are entered as Xs

Don't Care Conditions - Example

- Simplify the function $f=\bar{a} \cdot \bar{b} \cdot d+\bar{a} . c . d+$ a.c. d

With don't care conditions, $\bar{a} \cdot \bar{b} \cdot \bar{c} \cdot \bar{d}, \bar{a} \cdot \bar{b} . c . \bar{d}, \bar{a} \cdot b . \bar{c} \cdot d$
${ }_{a b} \backslash d 0001 \frac{c}{1110} \quad$ See only need to include Xs if they assist in making a bigger group, otherwise can ignore.

$$
f=\bar{a} \cdot \bar{b}+c . d \quad \text { or, } \quad f=\bar{a} . d+c . d
$$

Some Definitions

- Cover - A term is said to cover a minterm if that minterm is part of that term
- Prime Implicant - a term that cannot be further combined
- Essential Prime Implicant - a prime implicant that covers a minterm that no other prime implicant covers
- Covering Set - a minimum set of prime implicants which includes all essential terms plus any other prime implicants required to cover all minterms

Tabular Simplification

- Except in special cases or for sparse truth tables, the K-map method is not practical beyond 6 variables
- A systematic approach known as the QuineMcCluskey (Q-M) Method finds the minimised representation of any Boolean expression
- It is a tabular method that ensures all the prime implicants are found and can be automated for use on a computer

Q-M Method

- The Q-M Method has 2 steps:
- First a table, known as the QM implication table, is used to find all the prime implicants;
- Next the minimum cover set is found using the prime implicant chart.
- We will use a 4 variable example to show the method in operation:
- Minterms are: 4,5,6,8,9,10,13
- Don't cares are: 0,7,15.

Q-M Method

- The first step is to list all the minterms and don't cares in terms of their minterm indices represented as a binary number
- Note the entries are grouped according to the number of 1 s in the binary representation
- The $1^{\text {st }}$ column contains the minterms
- After applying the method, the $2^{\text {nd }}$ column will contain 3 variable terms. Similarly for subsequent columns.

Q-M Method

- The method begins by listing groups of minterms and don't cares in groups containing ascending numbers of 1 s with a blank line between the groups
- Thus the first group has zero ones, the second group has a single 1 and the third has two 1 s and so on
- We next apply the so called uniting theorem iteratively as follows

Q-M Method - Uniting Theorem

- Compare elements in the $1^{\text {st }}$ group (no 1s) with all elements in the $2^{\text {nd }}$ group. If they differ by a single bit, it means the terms are adjacent (think K-map)
- Adjacent terms are placed in the $2^{\text {nd }}$ column with the single bit that differs replaced by a dash (-). Terms in the $1^{\text {st }}$ column that contribute to a term in the second are ticked, i.e., they are not prime implicants.
- Now repeat for the groups in the $2^{\text {nd }}$ column
- As before groups must differ only by a single bit but they must also have a - in the same position
- Groups in $2^{\text {nd }}$ column that do not contribute to the $3^{\text {rd }}$ column are marked with an asterix (*), i.e., they are prime implicants

Q-M - Implication Table

- Minterms are: 4,5,6,8,9,10,13
- Don't cares are: 0,7,15.

Column 1 Column 2 Column 3
$0000 \checkmark \quad 0-00^{*} 01$ - *
$0100 r$
$1000 \checkmark$
$0101 \checkmark$ $0110 \checkmark$
$1001 \checkmark$
$1010 \checkmark$
$0111 \checkmark$
$1101 \checkmark$
$1111 \checkmark$

- 000 *
$010-\checkmark$
$01-0$
$100-*$
$10-0^{*}$
0
$01-1 \checkmark$
$\begin{array}{cccc}-1 & 0 & 1 \\ 0 & 1 & 1 & - \\ 1 & - & 1\end{array}$
1-01*
$\begin{array}{ccc}-1 & 1 \\ 1 & 1 & 1 \\ 1 & 1\end{array}$

K-map view of Q-M example

 1

Col. 2 adjacent minterms

Col. 2 * adjacent minterms, i.e., prime implicants

Col. 3 prime implicants

Q-M - Finding Min Cover

- The second step is to find the lowest number of prime implicants that cover the function - this is achieved using the prime implicant chart
- This chart is organised as follows:
- Label columns with the minterm indices (don't include don't cares)
- Label rows with minterms covered by a given prime implicant. To do this dashes (-) in a prime implicant are replaced by all combinations of 0 s and 1 s
- Place an X in the (row, column) location if the minterm represented by the column index is covered by the prime implicant associated with the row
- The next slide shows the initial prime implicant chart

Q-M - Prime Implicant Chart

* Terms in

	456891013	
0,4(0-00)	X	
0,8(-000)	X	
8,9(100-)	X X	
8,10(10-0)		X
9,13(1-01)	X	X
5,6,7 (01--)	XXX	
3,15(-1-1)	X	X

- Now we look for the essential prime implicants These are indicated when there is only a single X in any column, i.e., This means there is a minterm covered by one and only prime implicant

Q-M - Prime Implicant Chart

- The essential terms must be included in the final cover
- Draw lines in the column and row that have a X associated with an essential prime implicant and draw a box around the prime
- These minterms are already covered by the essential primes

Q-M - Prime Implicant Chart

- The essential prime implicants usually cover additional minterms.
- We must also cross out any columns that have an X in a row associated with an essential prime since these minterms are already covered by the essential primes

Q-M - Prime Implicant Chart

- We see 2 minterms are still uncovered (cols. 9 and 13)
- The final step is to find as few primes as possible to cover the remaining minterms
- We see the single prime implicant 1-01 covers both of them
- The boxed terms show the final covering set

Final K-Map view of Q-M Example

1

Essential prime implicant

Selected prime implicant to complete covering set

