
31/08/2020

1

Digital Electronics:

Combinational Logic

Beyond Simple Logic Gates

Multiplexor

• Multiplexor (Mux)/selector – chooses

1 of many inputs to steer to its single

output under the direction of control

inputs, e.g., if the input to a circuit can

come from several places a Mux is one

way to funnel the multiple sources

selectively to the single ouput.

31/08/2020

2

Multiplexor
• The hazard example is actually a 2-to-1 (2:1)

Mux, i.e., it can select either input x or z to

appear at output w under control of y

x
y

z

w x yz

0 0 0 0
0 1 0 1
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1

w

Mux
x

y

z
w

x

z
w

y

Multiplexor
• Clearly an n-to-1 (n:1) Mux is also possible.

For example, an 8-to-1 (8:1) Mux will need

3 control inputs.

• A Mux can also be used to implement

combinational logic functions. For example,

an 8 input Mux can be used to implement

functions having 3 variables expressed as

a sum of minterms, i.e., DNF.

zyxzyxzyxzyxzyxf 

31/08/2020

3

Multiplexor
zyxzyxzyxzyxf 

f

1
0
1

1
1

0
0
0

I0
I1

I2

I3

I4

I5
I6

I7

F

S2 S1 S0

x y z

• The control inputs are used to select the

minterms required at the output. The Mux is

sometimes called a hardware look-up table.

Multiplexor

yxzyxyxf

zzyxzyxyxf

zyxzyxzyxzyxf

.)...(

).(.)...(

........







• In this example if we use one of the inputs as

a variable, then we can get away with a 4-to-1

(4:1) Mux

f 0
1

I0
I1

I2

I3

F

S1 S0

x y

z
z

31/08/2020

4

Multiplexor
• We see it can also be designed via a truth

table based approach, e.g.,

f 0
1

I0
I1

I2

I3

F

S1 S0

x y

z
z

x y z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

f

z0I

z1I

0I2 

1I3 

Demultiplexor
• A demultiplexor is the opposite of a Mux,

i.e., a single input is directed to exactly

one of its outputs

• The truth table for a 1-to-2 (1:2) Demux

(i.e., 1 control input and 2 outputs is:

f0
g

O0
I0

S0

x

O1 f1

g

x
f0

f1

g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

31/08/2020

5

Demultiplexor
• Clearly a larger Demux are also possible.

For example, a 3-to-8 (3:8) Demux has 3

control inputs and 8 outputs.

 • A related function is a Decoder. In this

case the input g is permanently connected

to a logic 1. This yields a 1-of-2 decoder

(also known as a 1:2 decoder)
g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

g =1

x

0 1 0
1 0 1

0f 1f

• See only one output is logic 1 at a time

Decoder
• Clearly an 1-of-n Decoder is possible. For

example, a 1-of-8 Decoder (i.e., a 3:8

demux) has 3 control inputs and 8 outputs.

 • A typical application would be to ‘Enable

(EN)’ 1 out-of-n logic sub-systems.

O0
O1

O2

O3

O4

O5

O6

O7

S2

S1

S0
x

y

z

EN System 0

EN System 1

EN System 7

• So, letting

x=1, y=z=0

will enable

System 1

31/08/2020

6

Decoder
• We can see that a 1-of-n Decoder will

generate all the possible minterms having

n variables.

• Consequently, a logical expression having

DNF form can be implemented by ORing

together the required minterms at the

decoder output.

• Multiple output logic blocks can be created

by using multiple OR gates at the decoder

output, i.e., one for each output.

Decoder

O0
O1
O2

O3

O4

O5
O6

O7

S2

S1

S0
x

y

z

xyzxyzxyzf0 

xyzxyzf1 

• Decoder implementation of a 3 variable, 2

output combinational logic block.

Additional OR gates

to give more

outputs if required

31/08/2020

7

Even More Ways to Implement

Combinational Logic

• We have seen how combinational logic

can be implemented using logic gates

(e.g., AND, OR), Mux and Demux.

• However, it is also possible to generate

combinational logic functions using

memory devices, e.g., Read Only

Memories (ROMs)

ROM Overview

• A ROM is a data storage device:

– Usually written into once (either at manufacture or
using a programmer)

– Read at will

– Essentially is a look-up table, where a group of
input lines (say n) is used to specify the address
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

– So, the total number of bits stored is , i.e.,
64 in the example (very small!) ROM

nm 2

31/08/2020

8

ROM Example

data

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address

(decimal)

0
1
2
3
4
5
6
7

D0 D1 D2 D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit

ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting

minterms in the appropriate

address location

No logic simplification

required

Useful if multiple Boolean

functions are to be

implemented, e.g., in this

case we can easily do up to

4, i.e., 1 for each output line

Reasonably efficient if lots of

minterms need to be

generated

ROM Implementation
• Can be quite inefficient, i.e., become large in

size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

• Devices which can overcome these problems
are known as programmable logic array (PLA)

• In PLAs, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

31/08/2020

9

Basic PLA Structure

Programmed by

selectively removing

connections in the AND

and OR planes –

controlled by fuses or

memory bits

f0

a

c

b

f1

f2

AND plane

OR plane

Other PLA Style Structures
• In PLAs, only the required minterms are

generated using a separate AND plane.
Output from this plane are available to all OR
gates to give the final output

• A modified structure known as Programmable
Array Logic (PAL) does not have a
programmable OR array and so outputs from
the AND array can not be shared among the
OR gates to give the final outputs.

• This simplifies the structure, but at the cost of
lower efficiency

31/08/2020

10

Basic PAL Structure

f0

a

c

b

fn

AND

plane

OR

plane

Other Memory Devices

• Non-volatile storage is offered by ROMs (and

some other memory technologies, e.g.,

FLASH), i.e., the data remains intact, even

when the power supply is removed

• Volatile storage is offered by Static Random

Access Memory (SRAM) technology

– Data can be written into and read out of the

SRAM, but is lost once power is removed

31/08/2020

11

Memory Application

• Memory devices are often used in computer
systems

• The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

• The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

• So, more than one memory device will often
be connected to the same data bus

Bus Contention

• In this case, if the output from the data pin of

one memory was a 0 and the output from the

corresponding data pin of another memory

was a 1, the data on that line of the data bus

would be invalid

• So, how do we arrange for the data from

multiple memories to be connected to the

some bus wires?

31/08/2020

12

Bus Contention

• The answer is:

– Tristate buffers (or drivers)

– Control signals

• A tristate buffer is used on the data output of
the memory devices

– In contrast to a normal buffer which is either 1
or 0 at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus – known as the ‘high impedance’
condition

Tristate Buffer

Output Enable

(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional

analogy

31/08/2020

13

Control Signals

• We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

• Other control inputs are also provided:

– Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

– Chip select (CS) – determines if the chip is
activated

• Note that these signals can be active low,
depending upon the particular device

