Digital Electronics: Combinational Logic

Binary Adders

Introduction

- We will now look at how binary addition may be implemented using combinational logic circuits. We will consider:
- Half adder
- Full adder
- Ripple carry adder

Half Adder

- Adds together two, single bit binary numbers a and b (note: no carry input)
- Has the following truth table:

a	b	$c_{\text {out }}$ sum
0	0	0
0	1	0
1	0	1
1	0	0
1	1	1
i		0

- By inspection:

$$
\begin{aligned}
s u m & =\bar{a} \cdot b+a \cdot \bar{b}=a \oplus b \\
c_{\text {out }} & =a \cdot b
\end{aligned}
$$

Full Adder

- Adds together two, single bit binary numbers a and b (note: with a carry input)

- Has the following truth table:

Full Adder

$$
\begin{array}{rll|lll}
c_{\text {in }} & a & b & c_{\text {out }} & \text { sum } & \\
\hline 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 1 & 0 & 1 & \text { sum }=\bar{c}_{i n} \cdot \bar{a} \cdot b+\bar{c}_{i n} \cdot a \cdot \bar{b}+c_{i n} \cdot \bar{a} \cdot \bar{b}+c_{i n} \cdot a \cdot b \\
0 & 1 & 0 & 0 & 1 & \bar{c}_{i n} \cdot(\bar{a} \cdot b+a \cdot \bar{b})+c_{i n} \cdot(\bar{a} \cdot \bar{b}+a \cdot b) \\
0 & 1 & 1 & 1 & 0 & \text { From DeMorgan } \\
1 & 0 & 0 & 0 & 1 & \bar{a} \cdot \bar{b}+a \cdot b=\overline{(a+b) \cdot(\bar{a}+\bar{b})} \\
1 & 0 & 1 & 1 & 0 & =\overline{(a \cdot \bar{a}+a \cdot \bar{b}+b \cdot \bar{a}+b \cdot \bar{b})} \\
1 & 1 & 0 & 1 & 0 & \\
1 & 1 & 1 & 1 & 1 & \\
\end{array}
$$

So,

$$
\begin{aligned}
& \operatorname{sum}=\bar{c}_{i n} \cdot(\bar{a} \cdot b+a \cdot \bar{b})+c_{i n} \cdot \overline{(\bar{a} \cdot b+a \cdot \bar{b})} \\
& \text { sum }=\bar{c}_{i n} \cdot x+c_{i n} \cdot \bar{x}=c_{i n} \oplus x=c_{i n} \oplus a \oplus b
\end{aligned}
$$

Full Adder

$$
\begin{aligned}
& \begin{array}{ccc|cc}
c_{\text {in }} & a & b & c_{\text {out }} & \text { sum } \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array} \\
& c_{\text {out }}=\bar{c}_{\text {in }} \cdot a \cdot b+c_{\text {in }} \cdot \cdot \bar{a} \cdot b+c_{\text {in }} \cdot a \cdot \bar{b}+c_{\text {in }} \cdot a \cdot b \\
& \begin{array}{lll|lll}
0 & 0 & 1 & 0 & 1 & c_{\text {out }}=a \cdot b \cdot\left(\bar{c}_{\text {in }}+c_{\text {in }}\right)+c_{i n} \cdot \bar{a} \cdot b+c_{\text {in }} \cdot a \cdot \bar{b} \\
0 & 1 & 0 & 0 & 1 &
\end{array} \\
& \begin{array}{lll|llll}
0 & 1 & 0 & 0 & 1 & c_{\text {out }}=a \cdot b \cdot\left(c_{\text {in }}\right. \\
0 & 1 & 1 & 1 & 0 & c_{\text {out }}=a \cdot b+c_{\text {in }} \cdot \bar{a} \cdot b+c_{\text {in }} \cdot a \cdot \bar{b} \\
1 & 0 & 0 & 0 & 1
\end{array} \\
& \begin{array}{lll|llll}
1 & 0 & 0 & 0 & 1 & \\
1 & 0 & 1 & 1 & 0 & c_{\text {out }}=a \cdot\left(b+c_{\text {in }} \cdot \bar{b}\right)+c_{\text {in }} \cdot \bar{a} \cdot b
\end{array} \\
& \begin{array}{lll|lll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & c_{\text {out }}=a \cdot\left(b+c_{\text {in }}\right) \cdot(b+\bar{b})+c_{\text {in }} \cdot \bar{a} \cdot b
\end{array} \\
& c_{\text {out }}=b \cdot\left(a+c_{\text {in }} \cdot \bar{a}\right)+a \cdot c_{\text {in }}=b \cdot\left(a+c_{\text {in }}\right) \cdot(a+\bar{a})+a \cdot c_{\text {in }} \\
& c_{\text {out }}=b \cdot a+b \cdot c_{\text {in }}+a \cdot c_{\text {in }} \\
& c_{\text {out }}=b \cdot a+c_{\text {in }} \cdot(b+a)
\end{aligned}
$$

Full Adder

- Alternatively,

$$
\begin{array}{lll|ll}
c_{\text {in }} & a & b & c_{\text {out }} & \text { sum } \\
\hline 0 & 0 & 0 & 0 & 0 \\
c_{\text {out }}=\bar{c}_{\text {in }} \cdot a \cdot b+c_{\text {in }} \cdot \bar{a} \cdot b+c_{\text {in }} \cdot a \cdot \bar{b}+c_{\text {in }} \cdot a \cdot b \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
c_{\text {out }}=c_{\text {in }} \cdot(\bar{a} \cdot b+a \cdot \bar{b})+a \cdot b \cdot\left(c_{\text {in }}+\bar{c}_{\text {in }}\right) \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
c_{\text {out }}=c_{\text {in }} \cdot(a \oplus b)+a \cdot b \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

- Which is similar to previous expression except with the OR replaced by XOR

Ripple Carry Adder

- We have seen how we can implement a logic to add two, one bit binary numbers (inc. carry-in).
- However, in general we need to add together two, n bit binary numbers.
- One possible solution is known as the Ripple Carry Adder
- This is simply n, full adders cascaded together

Ripple Carry Adder

- Example, 4 bit adder

- Note: If we complement a and set c_{o} to one we have implemented $s=b-a$

To Speed up Ripple Carry Adder

- Abandon compositional approach to the adder design, i.e., do not build the design up from full-adders, but instead design the adder as a block of 2 -level combinational logic with $2 n$ inputs (+1 for carry in) and n outputs (+1 for carry out).
- Features
- Low delay (2 gate delays)
- Need some gates with large numbers of inputs (which are not available)
- Very complex to design and implement (imagine the truth table!

To Speed up Ripple Carry Adder

- Clearly the 2-level approach is not feasible
- One possible approach is to make use of the full-adder blocks, but to generate the carry signals independently, using fast carry generation logic
- Now we do not have to wait for the carry signals to ripple from full-adder to fulladder before output becomes valid

Fast Carry Generation

Fast Carry Generation

- We will now determine the Boolean equations required to generate the fast carry signals
- To do this we will consider the carry out signal, $c_{\text {out }}$, generated by a full-adder stage (say i), which conventionally gives rise to the carry in ($c_{\text {in }}$) to the next stage, i.e., c_{i+1}.

Fast Carry Generation

- Also from before we have,
$c_{i+1}=a_{i} \cdot b_{i}+c_{i} \cdot\left(a_{i}+b_{i}\right)$ or alternatively,
$c_{i+1}=a_{i} \cdot b_{i}+c_{i} .\left(a_{i} \oplus b_{i}\right)$
Using previous expressions gives,

$$
c_{i+1}=g_{i}+c_{i} \cdot p_{i}
$$

So,

$$
\begin{aligned}
& c_{i+2}=g_{i+1}+c_{i+1} \cdot p_{i+1} \\
& c_{i+2}=g_{i+1}+p_{i+1} \cdot\left(g_{i}+c_{i} \cdot p_{i}\right) \\
& c_{i+2}=g_{i+1}+p_{i+1} \cdot g_{i}+p_{i+1} \cdot p_{i} \cdot c_{i}
\end{aligned}
$$

Fast Carry Generation

Similarly,

$$
\begin{aligned}
& c_{i+3}=g_{i+2}+c_{i+2} \cdot p_{i+2} \\
& c_{i+3}=g_{i+2}+p_{i+2} \cdot\left(g_{i+1}+p_{i+1} \cdot\left(g_{i}+c_{i} \cdot p_{i}\right)\right) \\
& c_{i+3}=g_{i+2}+p_{i+2} \cdot\left(g_{i+1}+p_{i+1} \cdot g_{i}\right)+p_{i+2} \cdot p_{i+1} \cdot p_{i} \cdot c_{i}
\end{aligned}
$$

and
$c_{i+4}=g_{i+3}+c_{i+3} \cdot p_{i+3}$
$c_{i+4}=g_{i+3}+p_{i+3} \cdot\left(g_{i+2}+p_{i+2} \cdot\left(g_{i+1}+p_{i+1} \cdot g_{i}\right)+p_{i+2} \cdot p_{i+1} \cdot p_{i} \cdot c_{i}\right)$
$c_{i+4}=g_{i+3}+p_{i+3} \cdot\left(g_{i+2}+p_{i+2} \cdot\left(g_{i+1}+p_{i+1} \cdot g_{i}\right)\right)+p_{i+3} \cdot p_{i+2} \cdot p_{i+1} \cdot p_{i} \cdot c_{i}$

Fast Carry Generation

- So for example to generate c_{4}, i.e., $i=0$, $c_{4}=g_{3}+p_{3} \cdot\left(g_{2}+p_{2} \cdot\left(g_{1}+p_{1} \cdot g_{0}\right)\right)+p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$ $c_{4}=G+P c_{0}$
where,

$$
\begin{aligned}
& G=g_{3}+p_{3} \cdot\left(g_{2}+p_{2} \cdot\left(g_{1}+p_{1} \cdot g_{0}\right)\right) \\
& P=p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0}
\end{aligned}
$$

- See it is quick to evaluate this function

Fast Carry Generation

- We could generate all the carrys within an adder block using the previous equations
- However, in order to reduce complexity, a suitable approach is to implement say 4-bit adder blocks with only c_{4} generated using fast generation.
- This is used as the carry-in to the next 4-bit adder block
- Within each 4-bit adder block, conventional RCA is used

Fast Carry Generation

Fast Carry Generation

- Conventional ripple carry within 4-bit blocks
- Fast carry generation between 4-bit blocks
- Trade-off between complexity and speed

