
26/08/2020

1

Digital Electronics:

Combinational Logic

Binary Adders

Introduction

• We will now look at how binary addition

may be implemented using combinational

logic circuits. We will consider:

– Half adder

– Full adder

– Ripple carry adder

26/08/2020

2

Half Adder
• Adds together two, single bit binary

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum  ..

bacout .

Full Adder

• Adds together two, single bit binary

numbers a and b (note: with a carry input)

a

b cout

sum

cin

• Has the following truth table:

26/08/2020

3

Full Adder

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin





..

)..(.)...(

Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout







26/08/2020

4

Full Adder
• Alternatively,

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........







• Which is similar to previous expression

except with the OR replaced by XOR

Ripple Carry Adder
• We have seen how we can implement a

logic to add two, one bit binary numbers

(inc. carry-in).

• However, in general we need to add

together two, n bit binary numbers.

• One possible solution is known as the

Ripple Carry Adder

– This is simply n, full adders cascaded

together

26/08/2020

5

Ripple Carry Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to

one we have implemented abs 

To Speed up Ripple Carry Adder

• Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

• Features

– Low delay (2 gate delays)

– Need some gates with large numbers of inputs
(which are not available)

– Very complex to design and implement (imagine
the truth table!

26/08/2020

6

To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not
feasible

• One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

• Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation
a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional

RCA

Fast Carry

Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3

26/08/2020

7

Fast Carry Generation

• We will now determine the Boolean

equations required to generate the fast

carry signals

• To do this we will consider the carry out

signal, cout, generated by a full-adder

stage (say i), which conventionally gives

rise to the carry in (cin) to the next stage,

i.e., ci+1.

Fast Carry Generation

a b sici

0 00 0

1 10 10

1 00 01

100 01

0

1 0

1 11

1

1

1

1

0

101 10

0 01 01

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated

independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 

26/08/2020

8

Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac 

or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 

So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112













Fast Carry Generation

Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223













and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334













26/08/2020

9

Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334))..(.(

PcGc

cppppgpgpgpgc





where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG





• See it is quick to evaluate this function

Fast Carry Generation

• We could generate all the carrys within an

adder block using the previous equations

• However, in order to reduce complexity, a

suitable approach is to implement say 4-bit

adder blocks with only c4 generated using

fast generation.

– This is used as the carry-in to the next 4-bit

adder block

– Within each 4-bit adder block, conventional RCA

is used

26/08/2020

10

Fast Carry Generation

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0

Fast Carry Generation

• Conventional ripple carry within 4-bit blocks

• Fast carry generation between 4-bit blocks

• Trade-off between complexity and speed

