26/08/2020

Digital Electronics:
Combinational Logic

Binary Adders

Introduction

» We will now look at how binary addition
may be implemented using combinational
logic circuits. We will consider:

— Half adder
— Full adder
— Ripple carry adder

26/08/2020

Half Adder

» Adds together two, single bit binary
numbers a and b (note: no carry input)

» Has the following truth table:

ab|c, sum

out a sum
00|10 O — —
01(0 1 b c
10|0 1 — ——out
1111 O

* By inspection:
sum=ab+ab=a®b
Cout = ab

Full Adder

» Adds together two, single bit binary
numbers a and b (note: with a carry input)

a sum

b C

Cin
« Has the following truth table:

out

Full Adder

0
=1

Cout SUM

sum=c;,,.ab+c,.ab+c,ab+c,.ab
sum=c;,.(ab+ab)+c,.(ab +ab)

From DeMorgan

ab+ab=(a+b).(a+b)
=(a.a+ab +ba+bb)
=(ab +bh.a)
So, _ —
sum=c;,.(ab+ab)+c,(ab+ab)
sum = G;,. X+ C;,. X =C;, @ X =¢;, @adb

PRPRFRPPRPOOOO
PRPOORFRLPOO|D
RPORPORFRLPRORO|T
PFRPFRPORFRLOOO
RPOORORrLRFrO

Full Adder

Cout = Cin-ab+¢j.ab+c,.ab+c.ab

0
=1

Cout SUM

Cout = @D.(Ci, +Cipy) +Cip-ab+¢i.ab
Cout =ab+cp.ab+c,.ab

Cout =a-(b+¢pb)+¢.ab

Cout =a-(b+¢,).(b+b)+c;,.ab

PRPRRPRROOOO
PRPOORROO|D
RrORORORrRO|T
PRROROOO
RPOORORRERO

Cout =D.(a+C¢.a)+ac, =b.(a+c,).(a+a)+ac,
Cout =D-a+b.c, +ac,
Cout =D-2+C;,.(b+a)

26/08/2020

26/08/2020

Full Adder

 Alternatively,

0
S

Cout SUM

Cout =Cip-ab+c¢j.ab+c,.ab+c,.ab

= O

Cout =Cin-(@b+ab)+ab.(c, +¢p,)
Cout =Cin-(@@Db)+ab

PRPRRPFPRPOOOO
PRPOORRFRLROO|D
RPORFRPORORO|T
PRPPRPORFRLPOOO

RPOOROPRr

* Which is similar to previous expression
except with the OR replaced by XOR

Ripple Carry Adder

* We have seen how we can implement a
logic to add two, one bit binary numbers
(inc. carry-in).

* However, in general we need to add
together two, n bit binary numbers.

* One possible solution is known as the
Ripple Carry Adder

— This is simply n, full adders cascaded
together

Ripple Carry Adder
« Example, 4 bit adder

Co 3y by a by a, b, a; by

‘ a b a b a b a b
Cin Cout Cin Cout Cin Cout Cin Cout
sum sum sum sum

So S, S, Sy Cy

* Note: If we complement a and set c, to
one we have implemented s=b-a

To Speed up Ripple Carry Adder

« Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

* Features
— Low delay (2 gate delays)

— Need some gates with large numbers of inputs
(which are not available)

— Very complex to design and implement (imagine
the truth table!

26/08/2020

To Speed up Ripple Carry Adder

» Clearly the 2-level approach is not
feasible

* One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

* Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation

C, 8, by a; by a, b, a; by

[1 [1 [| [|
a b a b a b a b Conventional

Cin Cout Cin Cout Cin Cout Cin Cout | RCA

sum sum sum sum

I's, I's, I's, I's, C,
Co a, by a; by a, b, a; by
| [| [| [| [|
) Fast Carry
Fast Carry Generation Adder

| | [1 |
a b a b a b a b
c Cin Cout c Cin Cout c Cin Cout c Cin Cout

sum | | sum sum sum
I's, I's, I's, I's, C,

26/08/2020

Fast Carry Generation

» We will now determine the Boolean
equations required to generate the fast

carry signals

» To do this we will consider the carry out
signal, c,,, generated by a full-adder
stage (say i), which conventionally gives
rise to the carry in (c;,) to the next stage,

l.e., Ciyq.

Fast Carry Generation

Carry out always zero.

Call this carry Kkill

Carry out same as carry in.

Call this carry propagate

Carry out generated
independently of carry in.

Call this carry generate

kl =g bl
Pi = & @bl
g; =8 by

Also (from before), S = & @by D ¢

26/08/2020

Fast Carry Generation

» Also from before we have,
Ci =a. +¢.(a +by) oralternatively,
Ciy=a.b+c.(a ®b)
Using previous expressions gives,
Cii1=0i +G-b
So,
Cit2 = Git1 T Cia-Pina
Ciiv2 = Qina t Pist- (g| +Gi- P)
Cir2 = Qi1+ Pixa-Gi + Pisa-Pi G

Fast Carry Generation

Similarly,
Ci+3 = Giv2 T Cit2-Pis2
Ci+3 = Qi+2 t Pit2- (g|+l+ Pit1- (g| +Gi- P))
Ci3 = Ois2 + Pir2-(Jise + Pis1:0i) + Pis2-Pisa- Pi €

and
Cit4 = 0i+3 T Ci13-Pis3
Cit4 = 0iz3 t Pigs- (g|+2 + Piso- (g|+1 + Pis1-0i)+ Pit2-Pis1-PiCi)

Civa = Giz3 * Piy3-(Jiv2 + Piv2-(9iza + Pis1:0i)) + Piza-Pir2-Pisa-Pi i

26/08/2020

Fast Carry Generation

» So for example to generate c,, i.e., i =0,
C4 =03+ P3.(d2 + P2-(91+ P1-90)) + Ps-P2-Pr-Po-Co
c, =G+ Pcy
where,

G =03+ P3.(92 + Po-(91 + P1-90))
P = p3.P2-P1-Po
» See it is quick to evaluate this function

Fast Carry Generation

« We could generate all the carrys within an
adder block using the previous equations

* However, in order to reduce complexity, a
suitable approach is to implement say 4-bit
adder blocks with only c, generated using
fast generation.

— This is used as the carry-in to the next 4-bit
adder block

— Within each 4-bit adder block, conventional RCA
is used

26/08/2020

Fast Carry Generation

Co a, by a; b, a, b, a; b,

L__ [| [| [| [|

Fast Carry Generation

1 L 1 1 1
[_ a b a b a b a b

CO Cin Cout cin cout Cin Cout cin cout
sum sum sum sum
I'sy I's, I's, I's, ¢,

Fast Carry Generation

I a, by a, b a, b, a; by ay by as by ag b a; by
]] | 1 J. I 1] 1 1 1 1 1 1 1 1
L] | o I frd]
1 Fast Carry Generation Fast Carry Generation B
1 1 [T 1 1 1 1 1
a b a b a b a b a b a b a b a b
CI‘J! Cit!u‘ {"IN CU“F ('.J'” ('lllld (‘!H (‘Hﬂf "-‘4 CJ'IF CIIHI FJ‘IF FIJH! CNI Cd)“! CJ;J! Cl)!h‘
sum sum stm sum sum sum sum
T T T ;

=.\‘l LB S} r8y c— iS_‘ |.Y_; I S I 87

» Conventional ripple carry within 4-bit blocks
» Fast carry generation between 4-bit blocks
» Trade-off between complexity and speed

€y

26/08/2020

10

