
Q

Lecture Notes on

Denotational Semantics

Part II of the Computer Science Tripos 2020/21

Prof Marcelo Fiore
Department of Computer Science and Technology

University of Cambridge

c© A. M. Pitts, G. Winskel, M. Fiore





Contents

Notes ii

1 Introduction 1
1.1 Basic example of denotational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example: while-loops as fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Least Fixed Points 11
2.1 Posets and monotone functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Monotone functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Least elements and pre-fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Cpo’s and continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Tarski’s fixed point theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Constructions on Domains 25
3.1 Flat domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Products of domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Function domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Scott Induction 33
4.1 Chain-closed and admissible subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Building chain-closed subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Basic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Inverse image and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Logical operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 PCF 38
5.1 Terms and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Free variables, bound variables, and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Contextual equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Denotational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Denotational Semantics of PCF 48
6.1 Denotation of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Denotation of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Relating Denotational and Operational Semantics 57
7.1 Formal approximation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Proof of the Fundamental Property of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Extensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

i



8 Full Abstraction 64
8.1 Failure of full abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 PCF+por . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3 Fully abstract semantics for PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Notes
These notes are designed to accompany 10 lectures on Denotational Semantics for Part II of the Cambridge University
Computer Science Tripos. They are substantially those of Andrew Pitts (who lectured the course from 1997 to 1999)
with some changes and additions by Glynn Winskel (who lectured the course from 2000 to 2007) and by Marcelo
Fiore (who lectured the course from 2008). The material has been drawn from several different sources, including the
books mentioned below, previous versions of this course, and similar courses at some other universities.

Recommended books
• Winskel, G. (1993). The Formal Semantics of Programming Languages. MIT Press.

This is an excellent introduction to both the operational and denotational semantics of programming languages.
As far as this course is concerned, the relevant chapters are 5, 8, 9, 10 (Sections 1 and 2), and 11.

• Tennent, R. D. (1991). Semantics of Programming Languages. Prentice-Hall.

Parts I and II are relevant to this course.

Further reading
• Gunter, C. A. (1992). Semantics of Programming Languages. Structures and Techniques. MIT Press.

This is a graduate-level text containing much material not covered in this course. As far as this course is
concerned, the relevant chapters are 1, 2, and 4–6.

Feedback
Please fill out the online lecture course feedback form.

Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

ii



1 INTRODUCTION 1

1 Introduction
Slide 1 gives a reminder of various approaches to giving formal semantics for programming languages. The operational
approach was introduced in the Part IB course on Semantics of Programming Languages and the axiomatic approach
is illustrated in the Part II course on Hoare Logic and Model Checking. This course gives a brief introduction to some
of the techniques of the denotational approach. One of the aims of Denotational Semantics is to specify programming
language constructs in as abstract and implementation-independent way as possible: in this way one may gain insight
into the fundamental concepts underlying programming languages, their inter-relationships, and (sometimes) new ways
of realising those concepts in language designs. Of course, it is crucial to verify that denotational specifications
of languages are implementable—in other words to relate denotational semantics to operational semantics: we will
illustrate how this is done later in the course.

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-
ioms and rules of some logic of program properties.

Denotational.

Concerned with giving mathematical models of programming
languages. Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.

Slide 1

Characteristic features of a
denotational semantics

• Each phrase (= part of a program), P , is given a denotation,
[[P ]] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

• The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is
compositional).

Slide 2
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1.1 Basic example of denotational semantics
Consider the basic programming language IMP− over arithmetic and boolean expressions with control structures given
by assignment, sequencing, and conditionals described on Slide 3.

Basic example of denotational semantics (I)

IMP− syntax

Arithmetic expressions

A ∈ Aexp ::= n | L | A+A | . . .
where n ranges over integers and
L over a specified set of locations L

Boolean expressions

B ∈ Bexp ::= true | false | A = A | . . .
| ¬B | . . .

Commands
C ∈ Comm ::= skip | L := A | C;C

| if B then C else C

Slide 3

A denotational semantics for a programming language is constructed by giving a domain of interpretation to each
of the program-phrase categories together with semantic functions that compositionally describe the meaning of the
phrase-forming constructs. For IMP− this is done in Slides 4–10, and is easily implementable in SML.

Basic example of denotational semantics (II)

Semantic functions

A : Aexp→ (State → Z)

B : Bexp→ (State → B)

C : Comm→ (State ⇀ State)

where
Z = { . . . ,−1, 0, 1, . . . }
B = { true, false }

State = (L→ Z)

Slide 4
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Basic example of denotational semantics (III)

Semantic functionA

A[[n]] = λs ∈ State. n

A[[L]] = λs ∈ State. s(L)

A[[A1 +A2]] = λs ∈ State.A[[A1]](s) +A[[A2]](s)

Slide 5

Basic example of denotational semantics (IV)

Semantic function B

B[[true]] = λs ∈ State. true

B[[false]] = λs ∈ State. false

B[[A1 = A2]] = λs ∈ State. eq
(
A[[A1]](s),A[[A2]](s)

)
where eq(a, a′) =

{
true if a = a′

false if a 6= a′

Slide 6
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Basic example of denotational semantics (V)

Semantic function C

[[skip]] = λs ∈ State. s

NB: From now on the names of semantic functions are omitted!

Slide 7

A simple example of compositionality

Given partial functions [[C]], [[C ′]] : State ⇀ State and a
function [[B]] : State→{true, false}, we can define

[[if B then C else C ′]] =

λs ∈ State. if
(
[[B]](s), [[C]](s), [[C ′]](s)

)
where

if (b, x, x′) =

{
x if b = true

x′ if b = false

Slide 8
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Basic example of denotational semantics (VI)

Semantic function C

[[L := A]] = λs ∈ State. λ` ∈ L. if
(
` = L, [[A]](s), s(`)

)

Slide 9

Denotational semantics of sequential composition

Denotation of sequential composition C;C ′ of two commands

[[C;C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State. [[C ′]]
(
[[C]](s)

)
given by composition of the partial functions from states to states
[[C]], [[C ′]] : State ⇀ State which are the denotations of the
commands.

Cf. operational semantics of sequential composition:

C, s ⇓ s′ C ′, s′ ⇓ s′′

C;C ′, s ⇓ s′′
.

Slide 10
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1.2 Example: while-loops as fixed points
The requirement of compositionality mentioned on Slide 2 is quite a tough one. It means that the collection of
mathematical objects we use to give denotations to program phases has to be sufficiently rich that it supports operations
for modelling all the phrase-forming constructs of the programming language in question. Some phrase-forming
constructs are easy to deal with, others less so. For example, conditional expressions involving state-manipulating
commands can be given a denotational semantics in terms of a corresponding branching function applied to the
denotations of the immediate subexpressions: see Slide 8. Similarly, the denotational semantics of the sequential
composition of commands can be given by the operation of composition of partial functions from states to states, as
shown on Slide 10.

We now proceed to consider the denotational semantics of the basic programming language IMP, obtained by
extending IMP− with while-loops:

C ∈ Comm ::= . . . | while B do C

However, this looping construct is not so easy to explain compositionally!
The transition semantics of a while-loop

〈while B do C, s〉 → 〈if B then C; (while B do C) else skip, s〉

suggests that its denotation as a partial function from states to states should satisfy

(1) [[while B do C]] = [[if B then C; (while B do C) else skip]].

Note that this cannot be used directly to define [[while B do C]], since the right-hand side contains as a subphrase
the very phrase whose denotation we are trying to define. Using the denotational semantics of sequential composition
and if (and using the fact that the denotation of skip is the identity function λs ∈ State.s), (1) amounts to saying that
[[while B do C]] should be a solution of the fixed point equation given on Slide 11.

Fixed point property of

[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State→{true, false} and
c : State ⇀ State , we define

fb,c : (State ⇀ State)→ (State ⇀ State)
as

fb,c = λw ∈ (State⇀State). λs ∈ State. if
(
b(s), w(c(s)), s

)
.

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be
[[while B do C]]?

Slide 11

Such fixed point equations arise very often in giving denotational semantics to languages with recursive features.
Beginning with Dana Scott’s pioneering work in the late 60’s, a mathematical theory called domain theory has been
developed to provide a setting in which not only can we always find solutions for the fixed point equations arising from
denotational semantics, but also we can pick out solutions that are minimal in a suitable sense—and this turns out to
ensure a good match between denotational and operational semantics. The key idea is to consider a partial order between
the mathematical objects used as denotations—this partial order expresses the fact that one object is approximated by,
or carries more information than, or is more well-defined than another one below it in the ordering. Then the minimal
solution of a fixpoint equation can be constructed as the limit of an increasing chain of approximations to the solution.
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These ideas will be made mathematically precise and general in the next section; but first we illustrate how they work
out concretely for the particular problem on Slide 11.

For definiteness, let us consider the particular while-loop

(2) while X > 0 do (Y :=X ∗ Y ;X := X − 1)

where X and Y are two distinct integer storage locations (variables) and where the set of locations L is {X,Y }.
In this case we can just take a state to be an assignment [X 7→ x, Y 7→ y] with x, y ∈ Z, recording the current

contents of the locations X and Y respectively. Thus, State = (L→ Z).
We are trying to define the denotation of (2) as a partial function

w : State ⇀ State

that should be a solution to the fixed-point equation

w = f[[X>0]],[[Y :=X∗Y ;X:=X−1]](w)

on Slide 11.
For the particular boolean expression B = (X > 0) and command C = (Y :=X ∗ Y ;X := X − 1), the function

f[[B]],[[C]] coincides with the function f defined on Slide 12.

[[while X > 0 do (Y :=X ∗ Y ;X := X − 1)]]

Let

State
def
= (L→ Z) integer assignments to locations

D
def
= (State ⇀ State) partial functions on states

For [[while X > 0 do Y :=X ∗ Y ;X := X − 1]] ∈ D we
seek a minimal solution to w = f(w), where f : D→D is
defined by:

f(w)
(
[X 7→ x, Y 7→ y]

)
=

{
[X 7→ x, Y 7→ y] if x ≤ 0

w
(
[X 7→ x− 1, Y 7→ x ∗ y]

)
if x > 0.

Slide 12
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D
def
= (State ⇀ State)

• Partial orderv on D:

w v w′ iff for all s ∈ State , if w is defined at s then
so is w′ and moreover w(s) = w′(s).

iff the graph of w is included in the graph of w′.

• Least element⊥ ∈ D w.r.t.v:

⊥ = totally undefined partial function

= partial function with empty graph

(satisfies⊥ v w, for all w ∈ D).

Slide 13

Consider the partial order, v, between the elements of D = (State ⇀ State) given on Slide 13. Note that v does
embody the kind of ‘information ordering’ mentioned above: if w v w′, then w′ agrees with w wherever the latter is
defined, but it may be defined at some other arguments as well. Note also that D contains an element which is least
with respect to this partial order: for the totally undefined partial function, which we will write as ⊥, satisfies ⊥ v w
for any w ∈ D.

Starting with ⊥, we apply the function f over and over again to build up a sequence of partial functions
w0, w1, w2, . . . : {

w0
def
= ⊥

wn+1
def
= f(wn).

Using the definition of f on Slide 12, one finds that

w1[X 7→ x, Y 7→ y] = f(⊥)[X 7→ x, Y 7→ y] =

{
[X 7→ x, Y 7→ y] if x ≤ 0

undefined if x ≥ 1

w2[X 7→ x, Y 7→ y] = f(w1)[X 7→ x, Y 7→ y] =


[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y] if x = 1

undefined if x ≥ 2

w3[X 7→ x, Y 7→ y] = f(w2)[X 7→ x, Y 7→ y] =


[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y] if x = 1

[X 7→ 0, Y 7→ 2 ∗ y] if x = 2

undefined if x ≥ 3

w4[X 7→ x, Y 7→ y] = f(w3)[X 7→ x, Y 7→ y] =



[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y) if x = 1

[X 7→ 0, Y 7→ 2 ∗ y] if x = 2

[X 7→ 0, Y 7→ 6 ∗ y] if x = 3

undefined if x ≥ 4
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and in general

wn[X 7→ x, Y 7→ y] =


[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ (x!) ∗ y] if 0 < x < n

undefined if x ≥ n

where as usual, x! is the factorial of x.
Thus we get an increasing sequence of partial functions

w0 v w1 v w2 v . . . v wn v . . .

defined on larger and larger sets of states (x, y) and agreeing where they are defined. The union of all these partial
functions is the element w∞ ∈ D given by

w∞[X 7→ x, Y 7→ y] =

{
[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ (x!) ∗ y] if x > 0.

Note that w∞ is a fixed point of the function f , since for all [X 7→ x, Y 7→ y] we have

f(w∞)[X 7→ x, Y 7→ y] =

{
[X 7→ x, Y 7→ y] if x ≤ 0

w∞[X 7→ x− 1, Y 7→ x ∗ y] if x > 0
(by definition of f )

=


[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ 1 ∗ y] if x = 1

[X 7→ 0, Y 7→!(x− 1) ∗ x ∗ y] if x > 1

(by definition of w∞)

= w∞[X 7→ x, Y 7→ y] .

In fact one can show that w∞ is the least fixed point of f , in the sense that for all w ∈ D

(3) w = f(w) ⇒ w∞ v w.

This least fixed point w∞ is what we take as the denotation of

while X > 0 do (Y :=X ∗ Y ;X := X − 1).

Its construction is an instance of Tarski’s Fixed Point Theorem to be proved in the next section. Note also that w∞
is indeed the function from states to states that we get from the structural operational semantics of the command
while X > 0 do (Y :=X ∗ Y ;X := X − 1), as given in the Part IB course on Semantics of Programming
Languages.

1.3 Exercises
Exercise 1.3.1. Implement the denotational semantics of IMP− in SML.

Exercise 1.3.2. Consider the function

fb,c : (State ⇀ State)→ (State ⇀ State)

defined on Slide 11.
(i) Show by induction on n that

fb,c
n(⊥) = λs ∈ State.


ck(s) if 0 ≤ k < n is such that b(ci(s)) = true

for all 0 ≤ i < k and b(ck(s)) = false

undefined if b(ci(s)) = true for all 0 ≤ i < n

(ii) Let wb,c : State ⇀ State be the partial function defined as

wb,c
def
= λs ∈ State.


ck(s) if k ≥ 0 is such that b(ci(s)) = true

for all 0 ≤ i < k and b(ck(s)) = false

undefined if b(ci(s)) = true for all i ≥ 0

Show that wb,c satisfies the fixed-point equation

wb,c = fb,c(wb,c) .
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(iii) Describe the function fb,c for b = [[true]] = λs ∈ State.true and c = [[skip]] = λs ∈ State.s. Which partial
functions from states to states are fixed points of this fb,c? What is its least fixed point (with respect to the v ordering
defined above)? Does this least fixed point agree with the partial function from states to states determined by the
operational semantics of while true do skip?

Exercise 1.3.3. Show that the relation v defined on Slide 13 is a partial order with least element ⊥.

Exercise 1.3.4. Prove the statement (3). More generally, with the definitions of Slide 13 and Exercise 1.3.2, prove that

w = fb,c(w) =⇒ wb,c v w

for all w ∈ (State ⇀ State).
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2 Least Fixed Points
This section introduces a mathematical theory, domain theory, which amongst other things provides a general framework
for constructing the least fixed points used in the denotational semantics of various programming language features. The
theory was introduced by Dana Scott.

2.1 Posets and monotone functions

Thesis

All domains of computation are
partial orders with a least element.

All computable functions are
monotonic.

Slide 14

2.1.1 Posets

Domain theory makes use of partially ordered sets satisfying certain completeness properties. The definition of a partial
order is recalled on Slide 15. D is called the underlying set of the poset (D,v). Most of the time we will refer to posets
just by naming their underlying sets and use the same symbol v to denote the partial order in a variety of different
posets.

Partially ordered sets

A binary relationv on a set D is a partial order iff it is

reflexive: ∀d ∈ D. d v d

transitive: ∀d, d′, d′′ ∈ D. d v d′ v d′′ ⇒ d v d′′

anti-symmetric: ∀d, d′ ∈ D. d v d′ v d⇒ d = d′.

Such a pair (D,v) is called a partially ordered set , or poset .

Slide 15
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x v x

x v y y v z
x v z

x v y y v x
x = y

Slide 16

Example 2.1.1. The set (X⇀Y ) of all partial functions from a set X to a set Y can be made into a poset, as indicated
on Slide 17. It was this domain for the case X = Y = State (some set of states) that we used for the denotation of
commands in Section 1.2.

Domain of partial functions, X ⇀Y

Underlying set: all partial functions, f , with domain of definition
dom(f) ⊆ X and taking values in Y .

Partial order:
f v g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Slide 17
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2.1.2 Monotone functions

The notion of mapping between posets is given in Slide 18.

Monotonicity

• A function f : D→ E between posets is monotone iff

∀d, d′ ∈ D. d v d′ ⇒ f(d) v f(d′).

x v y
f(x) v f(y)

(f monotone)

Slide 18

Example 2.1.2. Given posets D and E, for each e ∈ E it is easy to see that the constant function D→E with value e,
λd ∈ D . e, is monotone.

Example 2.1.3. When D is the domain of partial functions (State ⇀ State) (cf. Slide 17), the function fb,c : D→D
defined on Slide 11 in connection with the denotational semantics of while-loops is a monotone function. We leave
the verification of this as an exercise.

2.2 Least elements and pre-fixed points
Definition 2.2.1. Suppose that D is a poset and that S is a subset of D. An element d ∈ S is the least element of S if
it satisfies

∀x ∈ S. d v x .

Note that because v is anti-symmetric, S has at most one least element. Note also that a poset may not have least
element. For example, Z with its usual partial order does not have a least element.

A fixed point for a function f : D→D is by definition an element d ∈ D satisfying f(d) = d. If D is a poset, we
can consider a weaker notion, of pre-fixed point, as defined on Slide 19.
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Pre-fixed points

Let D be a poset and f : D→D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies
f(d) v d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) v fix (f)(lfp1)

∀d ∈ D. f(d) v d ⇒ fix (f) v d.(lfp2)

Slide 19

Proof principle

1.

f(fix (f)) v fix (f)

2. Let D be a poset and let f : D → D be a function with a
least pre-fixed point fix (f) ∈ D.

For all x ∈ D, to prove that fix (f) v x it is enough to
establish that f(x) v x.

f(x) v x
fix (f) v x

Slide 20
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Proposition 2.2.2. Suppose D is a poset and f : D→ D is a function possessing a least pre-fixed point, fix (f), as
defined on Slide 19.

Provided f is monotone, fix (f) is in particular a fixed point for f (and hence is the least element of the set of fixed
points for f ).

Proof. By definition, fix (f) satisfies property (lfp1) on Slide 19. If f is monotone (Slide 18) we can apply f to both
sides of (lfp1) to conclude that

f(f(fix (f))) v f(fix (f)).

Then applying property (lfp2) with d = f(fix (f)), we get that

fix (f) v f(fix (f)).

Combining this with (lfp1) and the anti-symmetry property of the partial order v, we get f(fix (f)) = fix (f), as
required.

2.3 Cpo’s and continuous functions

Thesis?

All domains of computation are
complete partial orders with a least element.

All computable functions are
continuous.

Slide 21

2.3.1 Domains

Definition 2.3.1. (i) If it exists, we will write the least element of a poset D as ⊥D, or just ⊥ when D is understood
from the context. Thus ⊥ is uniquely determined by the property:

∀d ∈ D. ⊥ v d.

The least element of a poset is sometimes called its bottom element.

(ii) A countable, increasing chain in a poset D is a sequence of elements of D satisfying

d0 v d1 v d2 v . . .

An upper bound for the chain is any d ∈ D satisfying ∀n ∈ N. dn v d. If it exists, the least upper bound, or lub,
of the chain will be written as ⊔

n≥0

dn.

Thus by definition:

• ∀m ∈ N. dm v
⊔
n≥0 dn.

• For any d ∈ D, if ∀m ∈ N. dm v d, then
⊔
n≥0 dn v d.
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Remark 2.3.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasing chains in a poset: so a ‘chain’ will always mean a
countable, increasing chain.

(ii) Like the least element of any subset of a poset, the lub of a chain is unique if it exists. (It does not have to exist:
for example the chain 0 ≤ 1 ≤ 2 ≤ . . . in N has no upper bound, hence no lub.)

(iii) A least upper bound is sometimes called a supremum. Some other common notations for
⊔
n≥0 dn are:

∞⊔
n=0

dn and
⊔
{dn | n ≥ 0} .

(iv) The elements of a chain do not necessarily have to be distinct. In particular, we say that a chain d0 v d1 v
d2 v . . . is eventually constant if for some N ∈ N it is the case that ∀n ≥ N. dn = dN . Note that in this case⊔
n≥0 dn = dN .

(v) If we discard any finite number of elements at the beginning of a chain, we do not affect its set of upper bounds
and hence do not change its lub: ⊔

n≥0

dn =
⊔
n≥0

dN+n, for any N ∈ N.

Cpo’s and domains

A chain complete poset , or cpo for short, is a poset (D,v) in
which all countable increasing chains d0 v d1 v d2 v . . . have
least upper bounds,

⊔
n≥0 dn:

∀m ≥ 0 . dm v
⊔
n≥0

dn(lub1)

∀d ∈ D . (∀m ≥ 0 . dm v d) ⇒
⊔
n≥0

dn v d.(lub2)

A domain is a cpo that possesses a least element,⊥:

∀d ∈ D .⊥ v d.

Slide 22
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⊥ v x

xi v
⊔
n≥0 xn

(i ≥ 0 and 〈xn〉 a chain)

∀n ≥ 0 . xn v x⊔
n≥0 xn v x

(〈xi〉 a chain)

Slide 23

In this course we will be concerned with posets enjoying certain completeness properties, as defined on Slide 22. It
should be noted that the term ‘domain’ is used rather loosely in the literature on denotational semantics: there are many
different kinds of domain, enjoying various extra order-theoretic properties over and above the rather minimal ones of
chain-completeness and possession of a least element that we need for this course.

Example 2.3.3. The set (X⇀Y ) of all partial functions from a setX to a set Y can be made into a domain, as indicated
on Slide 24. It was this domain for the case X = Y = State (some set of states) that we used for the denotation of
commands in Section 1.2. Note that the f which is claimed to be the lub of f0 v f1 v f2 v . . . on Slide 24 is a
well-defined partial function because the fn agree where they are defined. We leave it as an exercise to check that this
f is indeed the least upper bound of f0 v f1 v f2 v . . . in the poset (X ⇀Y ,v).
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Domain of partial functions, X ⇀Y

Underlying set: all partial functions, f , with domain of definition
dom(f) ⊆ X and taking values in Y .

Partial order:
f v g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Lub of chain f0 v f1 v f2 v . . . is the partial function f with
dom(f) =

⋃
n≥0 dom(fn) and

f(x) =

{
fn(x) if x ∈ dom(fn), some n

undefined otherwise

Least element ⊥ is the totally undefined partial function.

Slide 24

Example 2.3.4. Any poset (D,v) whose underlying set D is finite is a cpo. For in such a poset any chain is eventually
constant and we noted in Remark 2.3.2(iv) that such a chain always possesses a lub. Of course, a finite poset need not
have a least element, and hence need not be a domain—for example, consider the poset with Hasse diagram

•

•

??

•

__

(The Hasse diagram of a poset is the directed graph whose vertices are the elements of the underlying set of the poset
and in which there is an edge from vertex x to vertex y iff x 6= y and ∀z. (x v z & z v y)⇒ (z = x ∨ z = y).)

Figure 1 shows two very simple, but infinite domains. Here are two examples of posets that are not cpos.

Example 2.3.5. The set of natural numbers N = {0, 1, 2, . . . } equipped with the usual partial order, ≤, is not a cpo.
For the increasing chain 0 ≤ 1 ≤ 2 ≤ . . . has no upper bound in N.

Example 2.3.6. Consider a modified version of the second example in Figure 1 in which we adjoin two different upper
bounds, ω1 6= ω2, for N. In other words, consider D def

= N ∪ {ω1, ω2} with partial order v defined by:

d v d′ def⇔


d, d′ ∈ N & d ≤ d′,

or d ∈ N & d′ ∈ {ω1, ω2},
or d = d′ = ω1,

or d = d′ = ω2.

Then the increasing chain 0 v 1 v 2 v . . . in D has two upper bounds (ω1 and ω2), but no least one (since ω1 6v ω2

and ω2 6v ω1). So (D,v) is not a cpo.
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The ‘flat natural numbers’, N⊥:

0 1 2 · · · n n+ 1 · · ·

⊥

jj gg ``

···

>> 66

···

The ‘vertical natural numbers’, Ω:
ω

n+ 1

n

OO

2

1

OO

0

OO

Figure 1: Two domains

Some properties of lubs of chains

Let D be a cpo.

1. For d ∈ D,
⊔
n d = d.

2. For every chain d0 v d1 v . . . v dn v . . . in D,⊔
n

dn =
⊔
n

dN+n

for all N ∈ N.

Slide 25
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3. For every pair of chains d0 v d1 v . . . v dn v . . . and
e0 v e1 v . . . v en v . . . in D,

if dn v en for all n ∈ N then
⊔
n dn v

⊔
n en.

∀n ≥ 0 . xn v yn⊔
n xn v

⊔
n yn

(〈xn〉 and 〈yn〉 chains)

Slide 26

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family
of elements dm,n ∈ D (m,n ≥ 0) satisfies

(†) m ≤ m′ & n ≤ n′ ⇒ dm,n v dm′,n′ .

Then ⊔
n≥0

d0,n v
⊔
n≥0

d1,n v
⊔
n≥0

d2,n v . . .

and ⊔
m≥0

dm,0 v
⊔
m≥0

dm,1 v
⊔
m≥0

dm,3 v . . .

Moreover⊔
m≥0

⊔
n≥0

dm,n

 =
⊔
k≥0

dk,k =
⊔
n≥0

⊔
m≥0

dm,n

 .

Slide 27
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Proof of the Lemma on Slide 27. We make use of the defining properties of lubs of chains—(lub1) and (lub2) on
Slide 22. First note that if m ≤ m′ then

dm,n v dm′,n by property (†) of the dm,n

v
⊔
n′≥0

dm′,n′ by (lub1)

for all n ≥ 0, and hence
⊔
n≥0 dm,n v

⊔
n′≥0 dm′,n′ by (lub2). Thus we do indeed get a chain of lubs⊔

n≥0

d0,n v
⊔
n≥0

d1,n v
⊔
n≥0

d2,n v . . .

and can form its lub,
⊔
m≥0

⊔
n≥0 dm,n. Using property (lub1) twice we have

dk,k v
⊔
n≥0

dk,n v
⊔
m≥0

⊔
n≥0

dm,n

for each k ≥ 0, and hence by (lub2)

(4)
⊔
k≥0

dk,k v
⊔
m≥0

⊔
n≥0

dm,n.

Conversely, for each m,n ≥ 0, note that

dm,n v dmax{m,n},max{m,n} by property (†)

v
⊔
k≥0

dk,k by (lub1)

and hence applying (lub2) twice we have

(5)
⊔
m≥0

⊔
n≥0

dm,n v
⊔
k≥0

dk,k.

Combining (4) and (5) with the anti-symmetry property of v yields the desired equality. We obtain the additional
equality by the same argument but interchanging the roles of m and n.

2.3.2 Continuous functions

Continuity and strictness

• If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains
d0 v d1 v . . . in D, it is the case that

f(
⊔
n≥0

dn) =
⊔
n≥0

f(dn) in E.

• If D and E have least elements, then the function f is strict
iff f(⊥) = ⊥.

Slide 28
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Remark 2.3.7. Note that if f : D→ E is monotone and d0 v d1 v d2 v . . . is a chain in D, then applying f we get
a chain f(d0) v f(d1) v f(d2) v . . . in E. Moreover, if d is an upper bound of the first chain, then f(d) is an upper
bound of the second and hence is greater than its lub. Hence if f : D→ E is a monotone function between cpo’s, we
always have ⊔

n≥0

f(dn) v f(
⊔
n≥0

dn)

Therefore (using the antisymmetry property of v), to check that a monotone function f between cpo’s is continuous, it
suffices to check for each chain d0 v d1 v d2 v . . . in D that

f(
⊔
n≥0

dn) v
⊔
n≥0

f(dn)

holds in E.

Example 2.3.8. Given cpo’s D and E, for each e ∈ E it is easy to see that the constant function D→ E with value e,
λd ∈ D . e, is continuous.

Example 2.3.9. When D is the domain of partial functions (State ⇀ State) (cf. Slide 24), the function fb,c : D→D
defined on Slide 11 in connection with the denotational semantics of while-loops is a continuous function. We leave
the verification of this as an exercise.

Example 2.3.10. Let Ω be the domain of vertical natural numbers, as defined in Figure 1. Then the function f : Ω→Ω
defined by {

f(n) = 0 (n ∈ N)

f(ω) = ω.

is monotone and strict, but it is not continuous because

f(
⊔
n≥0

n) = f(ω) = ω 6= 0 =
⊔
n≥0

0 =
⊔
n≥0

f(n).

2.4 Tarski’s fixed point theorem

Tarski’s Fixed Point Theorem

Let f : D→D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔
n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies
f
(
fix (f)

)
= fix (f), and hence is the least fixed point of f .

Slide 29
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Slide 29 gives the key result about continuous functions on domains which permits us to give denotational semantics
of programs involving recursive features. The notation fn(⊥) used on the slide is defined as follows:

(6)

{
f0(⊥)

def
= ⊥

fn+1(⊥)
def
= f(fn(⊥)).

Note that since ∀d ∈ D. ⊥ v d, one has f0(⊥) = ⊥ v f1(⊥); and by monotonicity of f

fn(⊥) v fn+1(⊥) ⇒ fn+1(⊥) = f(fn(⊥)) v f(fn+1(⊥)) = fn+2(⊥).

Therefore, by induction on n ∈ N, it is the case that ∀n ∈ N. fn(⊥) v fn+1(⊥). In other words the elements fn(⊥)
do form a chain in D. So since D is a cpo, the least upper bound used to define fix (f) on Slide 29 does make sense.

Proof of Tarski’s Fixed Point Theorem. First note that

f(fix (f)) = f(
⊔
n≥0

fn(⊥))

=
⊔
n≥0

f(fn(⊥)) by continuity of f

=
⊔
n≥0

fn+1(⊥) by (6)

=
⊔
n≥0

fn(⊥) by Remark 2.3.2(v)

= fix (f).

So fix (f) is indeed a fixed point for f and hence in particular satisfies condition (lfp1) on Slide 19. To verify the second
condition (lfp2) needed for a least pre-fixed point, suppose that d ∈ D satisfies f(d) v d. Then since ⊥ is least in D

f0(⊥) = ⊥ v d

and

fn(⊥) v d ⇒ fn+1(⊥) = f(fn(⊥)) v f(d) monotonicity of f
v d by assumption on d.

Hence by induction on n ∈ N we have ∀n ∈ N. fn(⊥) v d. Therefore d is an upper bound for the chain and hence lies
above the least such, i.e.

fix (f) =
⊔
n≥0

fn(⊥) v d

as required for (lfp2).

Example 2.4.1. The function f[[B]],[[C]] defined on Slide 11 is a continuous function (Exercise 2.5.3) on the domain
(State⇀State) (Slide 24). So we can apply the Fixed Point Theorem and define [[while B do C]] to be fix (f[[B]],[[C]]).
In particular, the method used to construct the partial function w∞ at the end of Section 1.2 is an instance of the method
used in the proof of the Fixed Point Theorem to construct least pre-fixed points.
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[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
⊔
n≥0 f[[B]],[[C]]

n(⊥)

= λs ∈ State.
[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0

Slide 30

2.5 Exercises
Exercise 2.5.1. Verify the claims implicit on Slide 24: that the relation v defined there is a partial order; that f is
indeed the lub of the chain f0 v f1 v f2 v . . . ; and that the totally undefined partial function is the least element.

Exercise 2.5.2. Prove the claims in Slides 25 and 27.

Exercise 2.5.3. Verify the claim made in Example 2.3.9 that fb,c is continuous. When is it strict?
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3 Constructions on Domains
In this section we give various ways of building domains and continuous functions, concentrating on the ones that will
be needed for a denotational semantics of the programming language PCF studied in the second half of the course. Note
that to specify a cpo one must define a set equipped with a binary relation and then prove

(i) the relation is a partial order;

(ii) lubs exist for all chains in the partially ordered set.

Furthermore, for the cpo to be a domain, one just has to prove

(iii) there is a least element.

Note that since lubs of chains and least elements are unique if they exist, a cpo or domain is completely determined by
its underlying set and partial order. In what follows we will give various recipes for constructing cpos and domains and
leave as an exercise the task of checking that properties (i), (ii), and (iii) do hold.

3.1 Flat domains
In order to model the PCF ground types nat and bool , we will use the notion of flat domain given on Slide 31.

Discrete cpo’s and flat domains

For any set X , the relation of equality

x v x′ def⇔ x = x′ (x, x′ ∈ X)

makes (X,v) into a cpo, called the discrete cpo with underlying
set X .

Let X⊥
def
= X ∪ {⊥}, where⊥ is some element not in X . Then

d v d′ def⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,v) into a domain (with least element⊥), called the
flat domain determined by X .

Slide 31

The flat domain of natural numbers, N⊥, is pictured in Figure 1; the flat domain of booleans, B⊥ looks like:

true false

⊥

aa ==

The following instances of continuous functions involving flat domains will also be needed for the denotational
semantics of PCF. We leave the proofs as exercises.

Proposition 3.1.1. Let f : X ⇀Y be a partial function between two sets. Then

f⊥ : X⊥→ Y⊥

f⊥(d)
def
=


f(d) if d ∈ X and f is defined at d
⊥ if d ∈ X and f is not defined at d
⊥ if d = ⊥

defines a continuous function between the corresponding flat domains.
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3.2 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1,v1) and (D2,v2) has underlying
set

D1 ×D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}
and partial orderv defined by

(d1, d2) v (d′1, d
′
2)

def⇔ d1 v1 d
′
1 & d2 v2 d

′
2

Lubs of chains are calculated componentwise:⊔
n≥0

(d1,n, d2,n) = (
⊔
i≥0

d1,i,
⊔
j≥0

d2,j).

If (D1,v1) and (D2,v2) are domains so is (D1 ×D2,v)
and⊥D1×D2 = (⊥D1 ,⊥D2).

Slide 32

Proposition 3.2.1 (Projections and pairing). Let D1 and D2 be cpo’s. The projections

π1 : D1 ×D2→D1 π2 : D1 ×D2→D2

π1(d1, d2)
def
= d1 π2(d1, d2)

def
= d2

are continuous functions. If f1 : D→D1 and f2 : D→D2 are continuous functions from a cpo D, then

〈f1, f2〉 : D→D1 ×D2

〈f1, f2〉(d)
def
= (f1(d), f2(d))

is continuous.

Proof. Continuity of these functions follows immediately from the characterisation of lubs of chains in D1×D2 given
on Slide 32.

Proposition 3.2.2. For each domain D the function

if : B⊥ × (D ×D)→D

if (x, (d, d′))
def
=


d if x = true

d′ if x = false

⊥D if x = ⊥

is continuous.

We will need the following generalised version of the product construction.

Definition 3.2.3 (Dependent products). Given a set I , suppose that for each i ∈ I we are given a cpo (Di,vi). The
product of this whole family of cpo’s has

• underlying set equal to the I-fold cartesian product,
∏
i∈I Di, of the sets Di—so it consists of all functions p

defined on I and such that the value of p at each i ∈ I is an element p(i) ∈ Di of the cpo Di;

• partial order v defined by
p v p′ def⇔ ∀i ∈ I. p(i) vi p′(i).
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As for the binary product (which is the particular case when I is a two-element set), lubs in (
∏
i∈I Di , v) can be

calculated componentwise: if p0 v p1 v p2 v . . . is a chain in the product cpo, its lub is the function mapping each
i ∈ I to the lub in Di of the chain p0(i) v p1(i) v p2(i) v . . . . Thus

(
⊔
n≥0

pn)(i) =
⊔
n≥0

pn(i) (i ∈ I).

In particular, for each i ∈ I the ith projection function

πi :
∏
j∈I

Dj →Di , πi(p)
def
= p(i)

is continuous. If all the Di are domains, then so is their product—the least element being the function mapping each
i ∈ I to the least element of Di.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function
f : (D × E)→ F is monotone if and only if it is monotone in
each argument separately:

∀d, d′ ∈ D, e ∈ E. d v d′ ⇒ f(d, e) v f(d′, e)

∀d ∈ D, e, e′ ∈ E. e v e′ ⇒ f(d, e) v f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains
in each argument separately:

f(
⊔
m≥0

dm , e) =
⊔
m≥0

f(dm, e)

f(d ,
⊔
n≥0

en) =
⊔
n≥0

f(d, en).

Slide 33

• A couple of derived rules:

x v x′ y v y′

f(x, y) v f(x′, y′)
(f monotone)

f(
⊔
m xm,

⊔
n yn) =

⊔
k f(xk, yk)

Slide 34
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Proof of the Proposition on Slide 33. The ‘only if’ direction is straightforward; its proof rests on the simple observa-
tions that if d v d′ then (d, e) v (d′, e), and (

⊔
m≥0 dm , e) =

⊔
m≥0(dm , e), as well as the companion facts for

the right argument. For the ‘if’ direction, suppose first that f is monotone in each argument separately. Then given
(d, e) v (d′, e′) in D × E, by definition of the partial order on the binary product we have d v d′ in D and e v e′ in
E. Hence

f(d, e) v f(d′, e) by monotonicity in first argument
v f(d′, e′) by monotonicity in second argument

and therefore by transitivity, f(d, e) v f(d′, e′), as required for monotonicity of f .
Now suppose f is continuous in each argument separately. Then given a chain (d0, e0) v (d1, e1) v (d2, e2) v . . .

in the binary product, we have

f(
⊔
n≥0

(dn, en)) = f(
⊔
i≥0

di ,
⊔
j≥0

ej) (cf. Slide 32)

=
⊔
i≥0

f(di,
⊔
j≥0

ej) by continuity in first argument

=
⊔
i≥0

⊔
j≥0

f(di, ej)

 by continuity in second argument

=
⊔
n≥0

f(dn, en) by lemma on Slide 27

as required for continuity of f .

3.3 Function domains
The set of continuous functions between two cpo’s/domains can be made into a cpo/domain as shown on Slide 35. The
terminology ‘exponential cpo/domain’ is sometimes used instead of ‘function cpo/domain’.

Function cpo’s and domains

Given cpo’s (D,vD) and (E,vE), the function cpo
(D→ E,v) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f v f ′ def⇔ ∀d ∈ D . f(d) vE f ′(d).

• A derived rule:

f v(D→E) g x vD y

f(x) v g(y)

Slide 35
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):⊔
n≥0

fn = λd ∈ D.
⊔
n≥0

fn(d) .

• A derived rule:

(⊔
n fn

)
(
⊔
m xm) =

⊔
k fk(xk)

If E is a domain, then so is D→ E and⊥D→E(d) = ⊥E , all
d ∈ D.
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Proof of Slide 35. We should show that the lub of a chain of functions,
⊔
n≥0 fn, is continuous. The proof uses the

‘interchange law’ of Slide 27]. Given a chain in D,

(
⊔
n≥0

fn)((
⊔
m≥0

dm)) =
⊔
n≥0

(fn(
⊔
m≥0

dm)) definition of
⊔
n≥0

fn

=
⊔
n≥0

(
⊔
m≥0

fn(dm)) continuity of each fn

=
⊔
m≥0

(
⊔
n≥0

fn(dm)) interchange law

=
⊔
m≥0

((
⊔
n≥0

fn)(dm)) definition of
⊔
n≥0

fn.

Proposition 3.3.1 (Evaluation and ‘Currying’). Given cpo’s D and E, the function

ev : (D→ E)×D→ E

ev(f, d)
def
= f(d)

is continuous. Given any continuous function f : D′ × D → E (with D′ a cpo), for each d′ ∈ D′ the function
d ∈ D 7→ f(d′, d) is continuous and hence determines an element of the function cpo D → E that we denote by
cur(f)(d′). Then

cur(f) : D′→ (D→ E)

cur(f)(d′)
def
= λd ∈ D . f(d′, d)

is a continuous function.1

1This ‘Curried’ version of f is named in honour of the logician H. B. Curry, a pioneer of combinatory logic and lambda calculus.
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Proof. For continuity of ev note that

ev(
⊔
n≥0

(fn, dn)) = ev(
⊔
i≥0

fi ,
⊔
j≥0

dj) lubs in products are componenwise

= (
⊔
i≥0

fi) (
⊔
j≥0

dj) by definition of ev

=
⊔
i≥0

fi(
⊔
j≥0

dj) lubs in function cpo’s are argumentwise

=
⊔
i≥0

⊔
j≥0

fi(dj) by continuity of each fi

=
⊔
n≥0

fn(dn) by the Lemma on Slide 27

=
⊔
n≥0

ev(fn, dn) by definition of ev .

The continuity of each cur(f)(d′) and then of cur(f) follows immediately from the fact that lubs of chains inD1×D2

can be calculated componentwise.

Continuity of composition

For cpo’s D,E, F , the composition function

◦ :
(
(E → F )× (D → E)

)
−→ (D → F )

defined by setting, for all f ∈ (D → E) and g ∈ (E → F ),

g ◦ f = λd ∈ D. g
(
f(d)

)
is continuous.

Slide 37
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Continuity of the fixpoint operator

Let D be a domain.

By Tarski’s Fixed Point Theorem we know that each
continuous function f ∈ (D→D) possesses a least
fixed point, fix (f) ∈ D.

Proposition. The function

fix : (D→D)→D

is continuous.
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Proof of the Proposition on Slide 38. We must first prove that fix : (D→ D)→ D is a monotone function. Suppose
f1 v f2 in the function domain D→D. We have to prove fix (f1) v fix (f2). But:

f1(fix (f2)) v f2(fix (f2)) since f1 v f2

v fix (f2) by (lfp1) for fix (f2).

So fix (f2) is a pre-fixed point for f1 and hence by (lfp2) (for fix (f1)) we have fix (f1) v fix (f2), as required.
Turning now to the preservation of lubs of chains, suppose f0 v f1 v f2 v . . . inD→D. Recalling Remark 2.3.7,

we just have to prove that
fix (

⊔
n≥0

fn) v
⊔
n≥0

fix (fn)

and by the property (lfp2) of least pre-fixed points (see Slide 19), for this it suffices to show that
⊔
n≥0 fix (fn) is a

pre-fixed point for the function
⊔
n≥0 fn. This is the case because:

(
⊔
m≥0

fm)(
⊔
n≥0

fix (fn)) =
⊔
m≥0

fm(
⊔
n≥0

fix (fn)) function lubs are argumentwise

=
⊔
m≥0

⊔
n≥0

fm(fix (fn)) by continuity of each fm

=
⊔
k≥0

fk(fix (fk)) by the Lemma on Slide 27

v
⊔
k≥0

fix (fk) by (lfp1) for each fk.
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3.4 Exercises
Exercise 3.4.1. Verify that the constructions given on Slide 32, in Definition 3.2.3, and on Slides 35 and 31 do give
cpo’s and domains (i.e. that properties (i), (ii) and (ii) mentioned at the start of this section do hold in each case). Give
the proofs of Propositions 3.1.1 and 3.2.2.

Exercise 3.4.2. Let X and Y be sets and X⊥ and Y⊥ the corresponding flat domains, as on Slide 31. Show that a
function f : X⊥→ Y⊥ is continuous if and only if one of (a) or (b) holds:

(a) f is strict, i.e. f(⊥) = ⊥.

(b) f is constant, i.e. ∀x ∈ X . f(x) = f(⊥).

Exercise 3.4.3. Let {>} be a one-element set and {>}⊥ the corresponding flat domain. Let Ω be the domain of
‘vertical natural numbers’, pictured in Figure 1. Show that the function domain (Ω→{>}⊥) is in bijection with Ω.

Exercise 3.4.4. Prove the Proposition on Slide 37.
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4 Scott Induction
4.1 Chain-closed and admissible subsets
In Section 2 we saw that the least fixed point of a continuous function f : D→D on a domain D can be expressed as
the lub of the chain obtained by repeatedly applying f starting with the least element ⊥ of D: fix (f) =

⊔
n≥0 f

n(⊥)
(cf. Slide 29). This construction allows one to prove properties of fix (f) by using Mathematical Induction for n to
show that each fn(⊥) has the property, provided the property in question satisfies the condition shown on Slide 39. It
is convenient to package up this use of Mathematical Induction in a way that hides the explicit construction of fix (f) as
the lub of a chain. This is done on Slide 40. To see the validity of the statement on that slide, note that f0(⊥) = ⊥ ∈ S
by the Base case; and fn(⊥) ∈ S implies fn+1(⊥) = f(fn(⊥)) ∈ S by the Induction step. Hence by induction on
n, we have ∀n ≥ 0 . fn(⊥) ∈ S. Therefore by the chain-closedness of S, fix (f) =

⊔
n≥0 f

n(⊥) ∈ S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff
for all chains d0 v d1 v d2 v . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
( ⊔
n≥0

dn

)
∈ S

If D is a domain, S ⊆ D is called admissible iff it is a
chain-closed subset of D and⊥ ∈ S.

A property Φ(d) of elements d ∈ D is called chain-closed
(resp. admissible) iff {d ∈ D | Φ(d)} is a chain-closed
(resp. admissible) subset of D.

Slide 39

Note. The terms inclusive, or inductive, are often used as synonyms of ‘chain-closed’.

Example 4.1.1. Consider the domain Ω of ‘vertical natural numbers’ pictured in Figure 1. Then

• any finite subset of Ω is chain-closed;

• {0, 2, 4, 6, . . . } is not a chain-closed subset of Ω;

• {0, 2, 4, 6, . . . } ∪ {ω} is a chain-closed (indeed, is an admissible) subset of Ω.
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Scott’s Fixed Point Induction Principle

Let f : D→D be a continuous function on a domain D.

For any admissible subset S ⊆ D, to prove that the least
fixed point of f is in S, i.e. that

fix (f) ∈ S ,

it suffices to prove

∀d ∈ D (d ∈ S ⇒ f(d) ∈ S) .

Slide 40

The difficulty with applying Scott’s Fixed Point Induction Principle in any particular case usually lies in identifying
an appropriate admissible subset S; i.e. in finding a suitably strong ‘induction hypothesis’.

4.2 Examples
Example 4.2.1. Suppose that D is a domain and that f : (D × (D × D)) → D is a continuous function. Let
g : (D ×D)→ (D ×D) be the continuous function defined by

g(d1, d2)
def
= (f(d1, (d1, d2)), f(d1, (d2, d2))) (d1, d2 ∈ D).

Then u1 = u2, where (u1, u2)
def
= fix (g). (Note that g is continuous because we can express it in terms of composition,

projections and pairing and hence apply Proposition 3.2.1 and Slide 37: g = 〈f ◦ 〈π1, 〈π1, π2〉〉, f ◦ 〈π1, 〈π2, π2〉〉〉.)

Proof. We have to show that fix (g) ∈ ∆ where

∆
def
= {(d1, d2) ∈ D ×D | d1 = d2}.

It is not hard to see that ∆ is an admissible subset of the product domain D ×D. So by Scott’s Fixed Point Induction
Principle, we just have to check that

∀(d1, d2) ∈ D ×D ((d1, d2) ∈ ∆ ⇒ g(d1, d2) ∈ ∆)

or equivalently, that

∀(d1, d2) ∈ D ×D (d1 = d2 ⇒ f(d1, d1, d2) = f(d1, d2, d2)),

which is clearly true.

The next example shows that Scott’s Induction Principle can be useful for proving (the denotational version of)
partial correctness assertions about programs, i.e. assertions of the form ‘if the program terminates, then such-and-such
a property holds of the results’. By contrast, a total correctness assertion would be ‘the program does terminate and
such-and-such a property holds of the results’. Because Scott Induction can only be applied for properties Φ for which
Φ(⊥) holds, it is not so useful for proving total correctness.

Example 4.2.2. Let f : D→D be the continuous function defined on Slide 12 whose least fixed point is the denotation
of the command

while X > 0 do (Y :=X ∗ Y ;X := X − 1).
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We will use Scott Induction to prove

(7)
∀x, y ≥ 0 .

fix (f)[X 7→ x, Y 7→ y] ↓ ⇒ fix (f)[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x) ∗ y]

where for w ∈ D =
(
(Z × Z) ⇀ (Z × Z)

)
we write w(x, y) ↓ to mean ‘the partial function w is defined at the state

[X 7→ x, Y 7→ y]’.

Proof. Let

S
def
=

 w ∈ D
∀x, y ≥ 0 .

w[X 7→ x, Y 7→ y] ↓
⇒ w[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x) ∗ y]

 .

It is not hard to see that S is admissible. Therefore, to prove (7), by Scott Induction it suffices to check that w ∈ S
implies f(w) ∈ S, for all w ∈ D. So suppose w ∈ S, that x, y ≥ 0, and that f(w)[X 7→ x, Y 7→ y] ↓. We have to
show that f(w)[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x) ∗ y]. We consider the two cases x = 0 and x > 0 separately.

If x = 0, then by definition of f (see Slide 12)

f(w)[X 7→ x, Y 7→ y] = [X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ y]

= [X 7→ 0, Y 7→ 1 ∗ y] = [X 7→ 0, Y 7→ (!0) ∗ y]

= [X 7→ 0, Y 7→ (!x) ∗ y] .

On the other hand, if x > 0, then by definition of f

w[X 7→ x− 1, Y 7→ x ∗ y] = f(w)[X 7→ x, Y 7→ y] ↓ (by assumption)

and then since w ∈ S and x− 1, x ∗ y ≥ 0, we must have

w[X 7→ x− 1, Y 7→ x ∗ y] = [X 7→ 0, Y 7→!(x− 1) ∗ (x ∗ y)]

and hence once again
f(w)[X 7→ x, Y 7→ y] = w[X 7→ x− 1, Y 7→ x ∗ y]

= [X 7→ 0, Y 7→!(x− 1) ∗ (x ∗ y)]

= [X 7→ 0, Y 7→ (!x) ∗ y] .

4.3 Building chain-closed subsets
The power of Scott induction depends on having a good stock of chain-closed subsets. Fortunately we are able to ensure
that a good many subsets are chain-closed by virtue of the way in which they are built up.

4.3.1 Basic relations

Let D be a cpo. The subsets

{(x, y) ∈ D ×D | x v y} and {(x, y) ∈ D ×D | x = y}

of D ×D are chain-closed (Why?). The properties (or predicates) x v y and x = y on D ×D determine chain-closed
sets.
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Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) v d =⇒ fix (f) v d

Proof by Scott induction.

Let d ∈ D be a pre-fixed point of f . Then,

x ∈↓(d) =⇒ x v d
=⇒ f(x) v f(d)

=⇒ f(x) v d
=⇒ f(x) ∈↓(d)

Hence,
fix (f) ∈↓(d) .

Slide 41

4.3.2 Inverse image and substitution

Let f : D → E be a continuous function between cpos D and E. Suppose S is a chain-closed subset of E. Then the
inverse image

f−1S = {x ∈ D | f(x) ∈ S}

is an chain-closed subset of D (Why?).
Suppose the subset S is defined by the property P on E i.e.

S = {y ∈ E | P (y)}.

Then
f−1S = {x ∈ D | P (f(x))}.

So, if a property P (y) on E determines a chain-closed subset of E and f : D → E is a continuous function, then the
property P (f(x)) on D determines a chain-closed subset of D.
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Example (II)

Let D be a domain and let f, g : D → D be continuous
functions such that f ◦ g v g ◦ f . Then,

f(⊥) v g(⊥) =⇒ fix (f) v fix (g) .

Proof by Scott induction.

Consider the admissible property Φ(x) ≡
(
f(x) v g(x)

)
of D.

Since

f(x) v g(x)⇒ g(f(x)) v g(g(x))⇒ f(g(x)) v g(g(x))

we have that
f(fix (g)) v g(fix (g)) .
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4.3.3 Logical operations

Let D be a cpo. Let S ⊆ D and T ⊆ D be chain-closed subsets of D. Then

S ∪ T and S ∩ T

are chain-closed subsets (Why?). In terms of properties, if P (x) and Q(x) determine chain-closed subsets of D, then
so do

P (x) or Q(x), P (x) & Q(x).

If Si, i ∈ I , is a family of chain-closed subsets of D indexed by a set I , then
⋂
i∈I Si is a chain-closed subset of

D (Why?).
Consequently, if a property P (x, y) determines a chain-closed subset of D×E, then the property ∀x ∈ D. P (x, y)

determines a chain-closed subset of E. This is because

{y ∈ E | ∀x ∈ D. P (x, y)} =
⋂
d∈D

{y ∈ E | P (d, y)}

=
⋂
d∈D

fd
−1{(x, y) ∈ D × E | P (x, y)}

where fd : E → D × E is the continuous function defined as fd(y) = (d, y) for every d ∈ D.
In fact, any property built-up as a universal quantification over several variables of conjunctions and disjunctions

of basic properties of the form f(x1, · · · , xk) v g(x1, · · · , xl) or f(x1, · · · , xk) = g(x1, · · · , xl), where f and g are
continuous, will determine a chain-closed subset of the product cpo appropriate to the non-quantified variables.

Note, however, that infinite unions of chain-closed subsets need not be chain-closed; finite subsets are always chain
complete but arbitrary unions of them need not be. Accordingly, we cannot in general build chain-closed subsets with
existential quantifications.

4.4 Exercises
Exercise 4.4.1. Answer all the “Why?”s above in the building of chain-closed subsets.

Exercise 4.4.2. Give an example of a subset S ⊆ D ×D′ of a product cpo that is not chain-closed, but which satisfies
both of the following:

(a) for all d ∈ D, {d′ | (d, d′) ∈ S} is a chain-closed subset of D′; and

(b) for all d′ ∈ D′, {d | (d, d′) ∈ S} is a chain-closed subset of D.

[Hint: consider D = D′ = Ω, the cpo in Figure 1.]
(Compare this with the property of continuous functions given on Slide 33.)
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5 PCF
The language PCF (‘Programming Computable Functions’) is a simple functional programming language that has
been used extensively as an example language in the development of the theory of both denotational and operational
semantics (and the relationship between the two). Its syntax was introduced by Dana Scott circa 1969 as part of a ‘Logic
of Computable Functions’1 and was studied as a programming language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational semantics of the particular version of PCF we use in these
notes. In Section 6 we will see how to give it a denotational semantics using domains and continuous function.

5.1 Terms and types
The types, expressions, and terms of the PCF language are defined on Slide 43.

PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | MM | fix(M)

where x ∈ V, an infinite set of variables.

Technicality: We identify expressions up to α-conversion of
bound variables (created by the fn expression-former): by
definition a PCF term is an α-equivalence class of expressions.

Slide 43

The intended meaning of the various syntactic forms is as follows.

• nat is the type of the natural numbers, 0, 1, 2, 3, . . . . In PCF these are generated from 0 by repeated application
of the successor operation, succ(−), whose intended meaning is to add 1 to its argument. The predecessor
operation pred(−) subtracts 1 from strictly positive natural numbers (and is undefined at 0).

• bool is the type of booleans, true and false . The operation zero(−) tests whether its argument is zero or strictly
positive and returns true or false accordingly. The conditional expression if M1 then M2 else M3 behaves
like either M2 or M3 depending upon whether M1 evaluates to true or false respectively.

• A PCF variable, x, stands for an unknown expression. PCF is a pure functional language—there is no state that
changes during expression evaluation and in particular variables are ‘identifiers’ standing for a fixed expression,
rather than ‘program variables’ whose contents may get mutated during evaluation.

• τ → τ ′ is the type of (partial) functions taking a single argument of type τ and (possibly) returning a result of
type τ ′. fnx : τ .M is the notation we will use for function abstraction (i.e. lambda abstraction) in PCF; note
that the type τ of the abstracted variable x is given explicitly. The application of function M1 to argument M2

is indicated by M1M2. As usual, the scope of a function abstraction extends as far to the right of the dot as
possible and function application associates to the left (i.e. M1M2M3 means (M1M2)M3, not M1 (M2M3)).

• The expression fix(M) indicates an element x recursively defined by x = M x. The lambda calculus equivalent
is Y M , where Y is a suitable fixpoint combinator.

1This logic was the stimulus for the development of the ML language and LCF system for machine-assisted proofs by Milner,
Gordon et al—see Paulson 1987; Scott’s original work was eventually published as Scott 1993.
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5.2 Free variables, bound variables, and substitution
PCF contains one variable-binding form: free occurrences of x in M become bound in fnx : τ .M . The finite set of
free variables of an expression M , fv(M), is defined by induction on its structure, as follows:

fv(0) = fv(true) = fv(false)
def
= ∅

fv(succ(M)) = fv(pred(M)) = fv(zero(M)) = fv(fix(M))
def
= fv(M)

fv(if M then M ′ else M ′′)
def
= fv(M) ∪ fv(M ′) ∪ fv(M ′′)

fv(MM ′)
def
= fv(M) ∪ fv(M ′)

fv(x)
def
= {x}

fv(fnx : τ .M)
def
= {x′ ∈ fv(M) | x′ 6= x}.

One says that M is closed if fv(M) = ∅ and open otherwise.
As indicated on Slide 43, we will identify α-convertible PCF expressions, i.e. ones that differ only up to the names

of their bound variables. Thus by definition, a PCF term is an equivalence class of PCF expressions for the equivalence
relation of α-conversion. However, we will always refer to a term via some representative expression, usually choosing
one whose bound variables are all distinct from each other and from any other variables in the context in which the term
is being used. The operation of substituting a term M for all free occurrences of a variable x in a term M ′ will be
written

M ′[M/x].

The operation is carried out by textual substitution of an expression representing M for free occurrences of x in an
expression representingM ′ whose binding variables are distinct from the free variables inM (thereby avoiding ‘capture’
of free variables in M by binders in M ′).

5.3 Typing
PCF is a typed language: types are assigned to terms via the relation shown on Slide 44 whose intended meaning is “if
each x ∈ dom(Γ) has type Γ(x), then M has type τ”.

PCF typing relation, Γ `M : τ

• Γ is a type environment , i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted
dom(Γ))

• M is a term

• τ is a type.

Relation is inductively defined by the axioms and rules in Figure 2.

Notation:

M : τ means M is closed and ∅ `M : τ holds.

PCFτ
def
= {M |M : τ}.

Slide 44
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Γ ` 0 : nat(:0)

Γ `M : nat

Γ ` succ(M) : nat
(:succ)

Γ `M : nat

Γ ` pred(M) : nat
(:pred)

Γ `M : nat

Γ ` zero(M) : bool
(:zero)

Γ ` b : bool (b = true, false)(:bool)

Γ `M1 : bool Γ `M2 : τ Γ `M3 : τ

Γ ` if M1 then M2 else M3 : τ
(:if )

Γ ` x : τ if x ∈ dom(Γ) & Γ(x) = τ(:var)

Γ[x 7→ τ ] `M : τ ′

Γ ` fnx : τ .M : τ → τ ′
if x /∈ dom(Γ)(:fn)

Γ `M1 : τ → τ ′ Γ `M2 : τ

Γ `M1M2 : τ ′
(:app)

Γ `M : τ → τ

Γ ` fix(M) : τ
(:fix)

In rule (:fn), Γ[x 7→ τ ] denotes the type environment mapping x to τ and otherwise acting like Γ.

Figure 2: Axioms and rules for PCF typing relation
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Proposition 5.3.1.

(i) If Γ `M : τ holds, then fv(M) ⊆ dom(Γ). If both Γ `M : τ and Γ `M : τ ′ hold, then τ = τ ′. In particular a
closed term has at most one type.

(ii) If Γ `M : τ and Γ[x 7→ τ ] `M ′ : τ ′ both hold, then so does Γ `M ′[M/x] : τ ′.

Proof. These properties of the inductively defined typing relation are easily proved by rule induction. The fact that a
term has at most one type for a given assignment of types to its free variables relies upon the fact that types of bound
variables are given explicitly in function abstractions.

Example 5.3.2 (Partial recursive functions in PCF). Although the PCF syntax is rather terse, the combination of
increment, decrement, test for zero, conditionals, function abstraction and application, and fixpoint recursion makes
it Turing expressive—in the sense that all partial recursive functions1 can be coded. For example, recall that the partial
function h : N × N⇀ N defined by primitive recursion from f : N⇀ N and g : N × N × N⇀ N satisfies that for all
x, y ∈ N {

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y)).

Thus if f has been coded in PCF by a term F : nat → nat and g by a term G : nat → (nat → (nat → nat)), then h
can be coded by

H
def
= fix(fnh : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then F x else Gx (pred y) (hx (pred y))).

Apart from primitive recursion, the other construction needed for defining partial recursive functions is minimisation.
For example, the partial function m : N⇀ N defined from k : N× N⇀ N by minimisation satisfies that for all x ∈ N

m(x) = least y ≥ 0 such that k(x, y) = 0 and
∀z. 0 ≤ z < y ⇒ k(x, z) > 0.

This can also be expressed using fixpoints, although not so easily as in the case of primitive recursion. For if k has been
coded in PCF by a term K : nat → (nat → nat), then in fact m can be coded as fnx : nat .M ′ x0 where

M ′
def
= fix(fnm′ : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(K xy) then y else m′ x (succ y)).

5.4 Evaluation
We give the operational semantics of PCF in terms of an inductively defined relation of evaluation whose form is
shown on Slide 45. As indicated there, the results of evaluation are PCF terms of a particular form, called values (and
sometimes also called ‘canonical forms’). The only values of type bool are true and false. The values of type nat are
unary representations of natural numbers, succn(0) (n ∈ N), where{

succ0(0)
def
= 0

succn+1(0)
def
= succ(succn(0)).

Values at function types, being function abstractions fnx : τ .M , are more ‘intensional’ than those at the ground data
types, since the body M is an unevaluated PCF term. The axioms and rules for generating the evaluation relation are
given in Figure 3.

1See the Part IB course on Computation Theory.
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PCF evaluation relation

takes the form

M ⇓τ V
where

• τ is a PCF type

• M,V ∈ PCFτ are closed PCF terms of type τ

• V is a value,
V ::= 0 | succ(V ) | true | false | fnx : τ .M .

The evaluation relation is inductively defined by the axioms and
rules in Figure 3.

Slide 45

Proposition 5.4.1. Evaluation in PCF is deterministic: if both M ⇓τ V and M ⇓τ V ′ hold, then V = V ′.

Proof. By rule induction: one shows that

{(M, τ, V ) |M ⇓τ V & ∀V ′ (M ⇓τ V ′ ⇒ V = V ′)}

is closed under the axioms and rules defining ⇓. We omit the details.

Example 5.4.2. The proposition shows that every closed typeable term evaluates to at most one value. Of course there
are some typeable terms that do not evaluate to anything. We write M 6 ⇓τ iff M : τ and 6 ∃V.M ⇓τ V . Then for
example

Ωτ
def
= fix(fnx : τ . x)

satisfies Ωτ 6 ⇓τ . (For if for some V there were a proof of fix(fnx : τ . x) ⇓τ V , choose one of minimal height. This
proof, call it P , must look like

fnx : τ . x ⇓ fnx : τ . x
(⇓val)

P ′
fix(fnx : τ . x) ⇓ V

(fnx : τ . x) (fix(fnx : τ . x)) ⇓ V
(⇓cbn)

fix(fnx : τ . x) ⇓ V
(⇓fix)

where P ′ is a strictly shorter proof of fix(fnx : τ . x) ⇓τ V , which contradicts the minimality of P .)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ transition relation. Let the relation M →τ M
′

(for M,M ′ ∈ PCFτ ) be inductively defined by the axioms and rules in Figure 4. Then one can show that for all τ and
M,V ∈ PCFτ with V a value

M ⇓τ V ⇔ M(→τ )∗V

where (→τ )∗ denotes the reflexive-transitive closure of the relation→τ .
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V ⇓τ V (V a value of type τ )(⇓val)

M ⇓nat V

succ(M) ⇓nat succ(V )
(⇓succ)

M ⇓nat succ(V )

pred(M) ⇓nat V
(⇓pred)

M ⇓nat 0

zero(M) ⇓bool true
(⇓zero1)

M ⇓nat succ(V )

zero(M) ⇓bool false
(⇓zero2)

M1 ⇓bool true M2 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if1)

M1 ⇓bool false M3 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if2)

M1 ⇓τ→τ ′ fnx : τ .M ′1 M ′1[M2/x] ⇓τ ′ V

M1M2 ⇓τ ′ V
(⇓cbn)

M fix(M) ⇓τ V

fix(M) ⇓τ V
(⇓fix)

Figure 3: Axioms and rules for PCF evaluation

M →nat M
′

op(M)→τ op(M ′)

(where op = succ,pred & τ = nat ,
or op = zero & τ = bool)

pred(succ(V ))→nat V (V a value of type nat)

zero(0)→bool true

zero(succ(V ))→bool false (V a value of type nat)

M1 →bool M
′
1

if M1 then M2 else M3 →τ if M ′1 then M2 else M3

if true then M1 else M2 →τ M1

if false then M1 else M2 →τ M2

M1 →τ→τ ′ M ′1

M1M2 →τ ′ M ′1M2

(fnx : τ .M1)M2 →τ ′ M1[M2/x]

fix(M)→τ M fix(M)

Figure 4: Axioms and rules for PCF transition relation
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5.5 Contextual equivalence

Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

Slide 46

Slide 46 recalls (from the CST Part IB course on Semantics of Programming Languages) the general notion of
contextual equivalence of phrases in a programming language. It is really a family of notions, parameterised by the
particular choices one takes for what constitutes a ‘program’ in the language and what are the ‘observable results’ of
executing such programs. For PCF it is reasonable to take the programs to be closed terms of type nat or bool and to
observe the values that result from evaluating such terms. This leads to the definition given on Slide 47.

Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ `M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ `M1 : τ and Γ `M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are
closed terms of type γ, where γ = nat or γ = bool ,
and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.

Slide 47

Definition 5.5.1 (Contexts). The notation C[M ] used on Slide 47 indicates a PCF term containing occurrences of a term
M , and then C[M ′] is the term that results from replacing these occurrences by M ′. More precisely, the PCF contexts
are generated by the grammar for PCF expressions augmented by the symbol ‘−’ representing a place, or ‘hole’ that
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can be filled with a PCF term:

C ::= − | 0 | succ(C) | pred(C) | zero(C) | true | false

| if C then C else C | x | fnx : τ . C | C C | fix(C)

Given such a context C,1 we write C[M ] for the PCF expression that results from replacing all the occurrences of − in
C by M . This form of substitution may well involve the capture of free variables in M by binders in C. For example, if
C is fnx : τ .−, then C[x] is fnx : τ . x. Nevertheless it is possible to show that if M and M ′ are α-convertible then
so are C[M ] and C[M ′]. Hence the operation on PCF expressions sending M to C[M ] induces a well-defined operation
on PCF terms (= α-equivalence classes of expressions).

Notation 5.5.2. For closed PCF terms, we write

M1
∼=ctx M2 : τ

for ∅ `M1
∼=ctx M2 : τ .

Although ∼=ctx is a natural notion of semantic equivalence for PCF given its operational semantics, it is hard to
work with, because of the universal quantification over contexts that occurs in the definition.

5.6 Denotational semantics
We aim to give a denotational semantics to PCF that is compositional (cf. Slide 2) and that matches its operational
semantics. These requirements are made more precise on Slide 48.

PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality .

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy .

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .

Slide 48

The soundness and adequacy properties make precise the connection between the operational and denotational
semantics for which we are aiming. Note that the adequacy property only involves the ‘ground’ datatypes nat and
bool . One cannot expect such a property to hold at function types because of the ‘intensional’ nature of values at such
types (mentioned above). Indeed such an adequacy property at function types would contradict the compositionality
and soundness properties we want for [[−]], as the following example shows.

Example 5.6.1. Consider the following two PCF value terms of type nat → nat :

V
def
= fnx : nat . (fn y : nat . y) 0 and V ′

def
= fnx : nat .0.

Now V 6 ⇓nat→nat V
′, since by (⇓val), V ⇓nat→nat V 6= V ′ and by Proposition 5.4.1 evaluation is deterministic.

However, the soundness and compositionality properties of [[−]] imply that [[V ]] = [[V ′]]. For using (⇓val) and (⇓cbn) we
have

(fn y : nat . y) 0 ⇓nat 0.

1It is common practice to write C[−] instead of C to indicate the symbol being used to mark the ‘holes’ in C.
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So by soundness [[(fn y : nat . y) 0]] = [[0]]. Therefore by compositionality for C[−]
def
= fnx : nat .− we have

[[C[(fn y : nat . y) 0]]] = [[C[0]]]

i.e. [[V ]] = [[V ′]].

As the theorem stated on Slide 49 shows, if we have a denotational semantics of PCF satisfying the properties on
Slide 48, we can use it to establish instances of contextual equivalence by showing that terms have equal denotation.
In many cases this is an easier task than proving contextual equivalence directly from the definition. The theorem on
Slide 49 generalises to open terms: if the continuous functions that are the denotations of two open terms (of the same
type for some type environment) are equal, then the terms are contextually equivalent.

Theorem. For all types τ and closed termsM1,M2 ∈ PCFτ ,
if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then
M1
∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V ]] (soundness)

⇒ [[C[M2]]] = [[V ]] (compositionality

on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.

Slide 49

Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]

? The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?

Slide 50
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5.7 Exercises
Exercise 5.7.1. Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.7.2. Recall that Church’s fixpoint combinator in the untyped lambda calculus is Y def
= λf . (λx . f (xx)) (λx . f (xx)).

Show that there are no PCF types τ1, τ2, τ3 so that the typing relation

∅ ` fn f : τ1 . (fnx : τ2 . f (xx)) (fnx : τ2 . f (xx)) : τ3

is provable from the axioms and rules in Figure 2.

Exercise 5.7.3. Define the following PCF terms:

plus
def
= fix(fn p : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then x else succ(p xpred(y)))

times
def
= fix(fn t : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then 0 else plus (t xpred(y))x)

fact
def
= fix(fn f : nat → nat . fnx : nat .

if zero(x) then succ(0) else times x(f pred(x))).

Show by induction on n ∈ N that for all m ∈ N

plus succm(0) succn(0) ⇓nat succm+n(0)

times succm(0) succn(0) ⇓nat succm∗n(0)

fact succn(0) ⇓nat succ!n(0).
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6 Denotational Semantics of PCF
We turn now to the task of showing that PCF has a denotational semantics with the properties of compositionality,
soundness, and adequacy.

Denotational semantics of PCF

To every typing judgement

Γ `M : τ

we associate a continuous function

[[Γ `M ]] : [[Γ]]→ [[τ ]]

between domains.

Slide 51

6.1 Denotation of types
For each PCF type τ , we define a domain [[τ ]] by induction on the structure of τ as on Slide 52.

Denotational semantics of PCF types

[[nat ]]
def
= N⊥ (flat domain)

[[bool ]]
def
= B⊥ (flat domain)

[[τ → τ ′]]
def
= [[τ ]]→ [[τ ′]] (function domain).

where N = {0, 1, 2, . . . } and B = {true, false}.

Slide 52
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6.2 Denotation of terms
For each PCF term M and type environment Γ, recall from Proposition 5.3.1 that there is at most one type τ for which
the typing relation Γ `M : τ is derivable from the axioms and rules in Figure 2. We only give a denotational semantics
to such typeable terms. Specifically, given such M and Γ, we will define a continuous function between domains

(8) [[Γ `M ]] : [[Γ]]→ [[τ ]]

where τ is the type for which Γ ` M : τ holds, and where [[Γ]] is the following dependent product domain (see
Definition 3.2.3):

(9) [[Γ]]
def
=

∏
x∈dom(Γ)

[[Γ(x)]].

The elements of the domain (9) will be called Γ-environments: they are functions ρ mapping each variable x in the
domain of definition of Γ to an element ρ(x) ∈ [[Γ(x)]] in the domain which is the denotation of the type Γ(x) assigned
to x by the type environment Γ.

Denotational semantics of PCF type environments

[[Γ]]
def
=

∏
x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables
to domains such that dom(ρ) = dom(Γ) and
ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)

Example:

1. For the empty type environment ∅,

[[∅]] = {⊥}

where⊥ denotes the unique partial function with
dom(⊥) = ∅.

Slide 53
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2. [[〈x 7→ τ〉]] =
(
{x } → [[τ ]]

)∼= [[τ ]]

3.

[[〈x1 7→ τ1, . . . , xn 7→ τn〉]]
∼=
(
{x1 } → [[τ1]]

)
× . . .×

(
{xn } → [[τn]]

)
∼= [[τ1]]× . . .× [[τn]]

Slide 54

The continuous function (8) is defined by induction on the structure of M , or equivalently, by induction on the
derivation of the typing relation Γ `M : τ . The definition is given on Slides 55–59, where we show the effect of each
function on a Γ-environment, ρ.

Denotational semantics of PCF terms, I

[[Γ ` 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ` true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ` false]](ρ)
def
= false ∈ [[bool ]]

[[Γ ` x]](ρ)
def
= ρ(x) ∈ [[Γ(x)]]

(
x ∈ dom(Γ)

)

Slide 55
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Denotational semantics of PCF terms, II

[[Γ ` succ(M)]](ρ)

def
=

{
[[Γ `M ]](ρ) + 1 if [[Γ `M ]](ρ) 6= ⊥
⊥ if [[Γ `M ]](ρ) = ⊥

[[Γ ` pred(M)]](ρ)

def
=

{
[[Γ `M ]](ρ)− 1 if [[Γ `M ]](ρ) > 0

⊥ if [[Γ `M ]](ρ) = 0,⊥

[[Γ ` zero(M)]](ρ)
def
=


true if [[Γ `M ]](ρ) = 0

false if [[Γ `M ]](ρ) > 0

⊥ if [[Γ `M ]](ρ) = ⊥

Slide 56

Denotational semantics of PCF terms, III

[[Γ ` if M1 then M2 else M3]](ρ)

def
=


[[Γ `M2]](ρ) if [[Γ `M1]](ρ) = true

[[Γ `M3]](ρ) if [[Γ `M1]](ρ) = false

⊥ if [[Γ `M1]](ρ) = ⊥

[[Γ `M1M2]](ρ)
def
=
(
[[Γ `M1]](ρ)

)
([[Γ `M2]](ρ))

Slide 57
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Denotational semantics of PCF terms, IV

[[Γ ` fnx : τ .M ]](ρ)

def
= λd ∈ [[τ ]] . [[Γ[x 7→ τ ] `M ]](ρ[x 7→ d])

(
x /∈ dom(Γ)

)

NB: ρ[x 7→ d] ∈ [[Γ[x 7→ τ ]]] is the function mapping x to d ∈ [[τ ]]

and otherwise acting like ρ.

Slide 58

Denotational semantics of PCF terms, V

[[Γ ` fix(M)]](ρ)
def
= fix ([[Γ `M ]](ρ))

Recall that fix is the function assigning least fixed points to continuous

functions.

Slide 59
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Denotational semantics of PCF

Proposition. For all typing judgements Γ `M : τ , the
denotation

[[Γ `M ]] : [[Γ]]→ [[τ ]]

is a well-defined continous function.

Slide 60

[[Γ ` M ]] : [[Γ]]→ [[τ ]] is a well-defined continuous function because the base cases of the definition (on Slide 55)
are continuous functions and at each induction step, in giving the denotation of a compound phrase in terms of the
denotations of its immediate subphrases, we make use of constructions preserving continuity—as we now indicate.

0, true, and false: The denotation of these terms (Slide 55) are all functions that are constantly equal to a particular
value. We noted in Example 2.3.8 that such functions are continuous.

variables: The denotation of a variable (Slide 55) is a projection function. We noted in Definition 3.2.3 that such
functions are continuous, because of the way lubs are computed componentwise in dependent product domains.

succ, pred, and zero: We need to make use of the fact that composition of functions preserves continuity—see the
Proposition on Slide 37. We leave its proof as a simple exercise. In particular, the denotation of succ(M) (Slide 56) is
the composition

s⊥ ◦ [[Γ `M ]]

where by induction hypothesis [[Γ ` M ]] : [[Γ]] → N⊥ is a continuous function, and where s⊥ : N⊥ → N⊥ is the
continuous function on the flat domain N⊥ induced, as in Proposition 3.1.1, by the function s : N⇀N mapping each n
to n+ 1.

Similarly

[[Γ ` pred(M)]] = p⊥ ◦ [[Γ `M ]] and [[Γ ` zero(M)]] = z⊥ ◦ [[Γ `M ]],

for suitable functions p : N⇀N and z : N⇀B. (Only p is a properly partial function, undefined at 0; s and z are totally
defined functions.)

conditional: By induction hypothesis we have continuous functions [[Γ ` M1]] : [[Γ]]→ B⊥, [[Γ ` M2]] : [[Γ]]→ [[τ ]],
and [[Γ ` M3]] : [[Γ]] → [[τ ]]. Then [[Γ ` if M1 then M2 else M3]] is continuous because we can express the
definition on Slide 57 in terms of composition, the pairing operation of Proposition 3.2.1, and the continuous function
: B⊥ × ([[τ ]]× [[τ ]])→ [[τ ]] of Proposition 3.2.2:

[[Γ ` if M1 then M2 else M3]] = if ◦ 〈[[Γ `M1]], 〈[[Γ `M2]], [[Γ `M3]]〉〉.

application: By induction hypothesis we have continuous functions [[Γ ` M1]] : [[Γ]] → ([[τ ]] → [[τ ′]]) and
[[Γ ` M2]] : [[Γ]] → [[τ ]]. Then [[Γ ` M1M2]] is continuous because we can express the definition on Slide 57 in
terms of composition, pairing, and the evaluation function ev : ([[τ ]]→ [[τ ′]])× [[τ ]]→ [[τ ′]] that we proved continuous in
Proposition 3.3.1:

[[Γ `M1M2]] = ev ◦ 〈[[Γ `M1]], [[Γ `M2]]〉.
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function abstraction: By induction hypothesis we have a continuous function [[Γ[x 7→ τ ] `M ]] : [[Γ[x 7→ τ ]]]→ [[τ ′]]
with x /∈ dom(Γ). Note that each Γ[x 7→ τ ]-environment, ρ′ ∈ [[Γ[x 7→ τ ]]], can be uniquely expressed as ρ[x 7→ d],
where ρ is the restriction of the function ρ′ to dom(Γ) and where d = ρ′(x); furthermore the partial order respects this
decomposition: ρ1[x 7→ d1] v ρ2[x 7→ d2] in [[Γ[x 7→ τ ]]] iff ρ1 v ρ2 in [[Γ]] and d1 v d2 in [[τ ]]. Thus we can identify
[[Γ[x 7→ τ ]]] with the binary product domain [[Γ]]× [[τ ]]. So we can apply the ‘Currying’ operation of Proposition 3.3.1
to obtain a continuous function

cur([[Γ[x 7→ τ ] `M ]]) : [[Γ]] → ([[τ ]]→ [[τ ′]])=[[τ → τ ′]].

But this is precisely the function used to define [[Γ ` fnx : τ .M ]] on Slide 58.

fixpoints: By induction hypothesis we have a continuous function [[Γ ` M ]] : [[Γ]]→ [[τ → τ ]]. Now [[τ → τ ]] is the
function domain [[τ ]]→ [[τ ]] and from the definition on Slide 58 we have that [[Γ ` fix(M)]] = fix ◦ [[Γ ` M ]] is the
composition with the function fix : ([[τ ]]→ [[τ ]])→ [[τ ]] assigning least fixpoints, which we proved continuous in the
Proposition on Slide 38.

Denotations of closed terms

If M ∈ PCFτ , then by definition ∅ `M : τ holds, so we get
[[∅ `M ]] : [[∅]]→ [[τ ]].

When Γ = ∅, the only Γ-environment is the totally undefined
partial function—call it⊥.

So in this case [[Γ]] is a one-element domain, {⊥}. Continuous

functions f : {⊥}→D are in bijection with elements f(⊥) ∈ D, and

in particular we can identify the denotation of closed PCF terms with

elements of the domain denoting their type:

[[M ]]
def
= [[∅ `M ]](⊥) ∈ [[τ ]] (M ∈ PCFτ )

Slide 61

6.3 Compositionality
The fact that the denotational semantics of PCF terms is compositional—i.e. that the denotation of a compound term is
a function of the denotations of its immediate subterms—is part and parcel of the definition of [[Γ ` M ]] by induction
on the structure of M . So in particular, each of the ways of constructing terms in PCF respects equality of denotations:
this is summarised in Figure 5. Then the property of closed terms stated on Slide 48, viz.

[[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]]

follows from this by induction on the structure of the context C[−]. More generally, for open terms we have

Proposition 6.3.1. Suppose
[[Γ `M ]] = [[Γ `M ′]] : [[Γ]]→ [[τ ]]

and that C[−] is a PCF context such that Γ′ ` C[M ] : τ ′ and Γ′ ` C[M ′] : τ ′ hold for some some type τ ′ and some type
environment Γ′. Then

[[Γ′ ` C[M ]]] = [[Γ′ ` C[M ′]]] : [[Γ′]]→ [[τ ′]].
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• If [[Γ `M ]] = [[Γ `M ′]] : [[Γ]]→ [[nat ]], then

[[Γ ` op(M)]] = [[Γ ` op(M ′)]] : [[Γ]]→ [[τ ]]

(where op = succ,pred and τ = nat , or op = zero and τ = bool ).

• If [[Γ ` M1]] = [[Γ ` M ′1]] : [[Γ]]→ [[bool ]], [[Γ ` M2]] = [[Γ ` M ′2]] : [[Γ]]→ [[τ ]], and [[Γ ` M3]] = [[Γ ` M ′3]] :
[[Γ]]→ [[τ ]], then

[[Γ ` if M1 then M2 else M3]] = [[Γ ` if M ′1 then M ′2 else M ′3]] : [[Γ]]→ [[τ ]].

• If [[Γ `M1]] = [[Γ `M ′1]] : [[Γ]]→ [[τ → τ ′]] and [[Γ `M2]] = [[Γ `M ′2]] : [[Γ]]→ [[τ ]], then

[[Γ `M1M2]] = [[Γ `M ′1M ′2]] : [[Γ]]→ [[τ ′]].

• If [[Γ[x 7→ τ ] `M ]] = [[Γ[x 7→ τ ] `M ′]] : [[Γ[x 7→ τ ]]]→ [[τ ′]], then

[[Γ ` fnx : τ .M ]] = [[Γ ` fnx : τ .M ′]] : [[Γ]]→ [[τ → τ ′]].

• If [[Γ `M ]] = [[Γ `M ′]] : [[Γ]]→ [[τ → τ ]], then

[[Γ ` fix(M)]] = [[Γ ` fix(M ′)]] : [[Γ]]→ [[τ ]].

Figure 5: Compositionality properties of [[−]]

Substitution property of [[−]]

Proposition. Suppose

Γ `M : τ

Γ[x 7→ τ ] `M ′ : τ ′

(so that by Proposition 5.3.1(ii) we also have
Γ `M ′[M/x] : τ ′). Then for all ρ ∈ [[Γ]]

[[Γ `M ′[M/x]]](ρ)

= [[Γ[x 7→ τ ] `M ′]](ρ[x 7→ [[Γ `M ]](ρ)]).

In particular when Γ = ∅, [[x 7→ τ `M ′]] : [[τ ]]→ [[τ ′]] and

[[M ′[M/x]]] = [[x 7→ τ `M ′]]([[M ]])

Slide 62

The substitution property stated on Slide 62 gives another aspect of the compositional nature of the denotational
semantics of PCF. It can be proved by induction on the structure of the term M ′.
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6.4 Soundness
The second of the aims mentioned on Slide 48 is to show that if a closed PCF term M evaluates to a value V in the
operational semantics, then M and V have the same denotation.

Theorem 6.4.1. For all PCF types τ and all closed terms M,V ∈ PCFτ with V a value, if M ⇓τ V is derivable from
the axioms and rules in Figure 3 then [[M ]] and [[V ]] are equal elements of the domain [[τ ]].

Proof. One uses Rule Induction for the inductively defined relation ⇓. Specifically, defining

Φ(M, τ, V )
def⇔ [[M ]] = [[V ]] ∈ [[τ ]]

one shows that the property Φ(M, τ, V ) is closed under the axioms and rules in Figure 3. We give the argument for
rules (⇓cbn) and (⇓fix), and leave the others as easy exercises.

Case (⇓cbn). Suppose

[[M1]] = [[fnx : τ .M ′1]] ∈ [[τ → τ ′]](10)
[[M ′1[M2/x]]] = [[V ]] ∈ [[τ ′]].(11)

We have to prove that [[M1M2]] = [[V ]] ∈ [[τ ′]]. But

[[M1M2]] = [[M1]]([[M2]]) by Slide 57
= [[fnx : τ .M ′1]]([[M2]]) by (10)
= (λd ∈ [[τ ]] . [[x 7→ τ `M ′1]](d))([[M2]]) by Slide 58
= [[x 7→ τ `M ′1]]([[M2]])

= [[M ′1[M2/x]]] by Slide 62
= [[V ]] by (11).

Case (⇓fix). Suppose

(12) [[M fix(M)]] = [[V ]] ∈ [[τ ]].

We have to prove that [[fix(M)]] = [[V ]] ∈ [[τ ]]. But

[[fix(M)]] = fix ([[M ]]) by Slide 58
= [[M ]](fix ([[M ]])) by fixed point property of fix

= [[M ]] [[fix(M)]] by Slide 58
= [[M fix(M)]] by Slide 57
= [[V ]] by (12).

We have now established two of the three properties of the denotational semantics of PCF stated on Slide 48 (and
which in particular are needed to use denotational equality to prove PCF contextual equivalences). The third property,
adequacy, is not so easy to prove as are the first two. We postpone the proof until we have introduced a useful principle
of induction tailored to reasoning about least fixed points. This is the subject of the next section.

6.5 Exercises
Exercise 6.5.1. Prove the Proposition on Slide 62.

Exercise 6.5.2. Defining Ωτ
def
= fix(fnx : τ . x), show that [[Ωτ ]] is the least element⊥ of the domain [[τ ]]. Deduce that

[[fnx : τ .Ωτ ]] = [[Ωτ→τ ]].
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7 Relating Denotational and Operational Semantics
We have already seen (in Section 6.4) that the denotational semantics of PCF given in Section 6 is sound for the
operational semantics, in the sense defined on Slide 48. Here we prove the property of adequacy defined on that slide.
So we have to prove for any closed PCF terms M and V of type τ = nat or bool with V a value, that

[[M ]] = [[V ]] ⇒ M ⇓τ V.

Perhaps surprisingly, this is not easy to prove. We will employ a method due to Plotkin (although not quite the one
used in his original paper on PCF, Plotkin 1977) and Mulmuley (1987) making use of the following notion of ‘formal
approximation’ relations.

Adequacy

For any closed PCF terms M and V of ground type
γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .

NB. Adequacy does not hold at function types:

[[fn x : τ. (fn y : τ. y)x]] = [[fn x : τ. x]] : [[τ ]]→ [[τ ]]

but

fn x : τ. (fn y : τ. y)x 6 ⇓τ→τ fn x : τ. x

Slide 63

7.1 Formal approximation relations
We define a certain family of binary relations

Cτ ⊆ [[τ ]]× PCFτ

indexed by the PCF types, τ . Thus each Cτ relates elements of the domain [[τ ]] to closed PCF terms of type τ . We use
infix notation and write d Cτ M instead of (d,M) ∈ Cτ . The definition of these relations Cτ proceeds by induction on
the structure of the type τ and is given on Slide 64. (Read the definition in conjunction with the definition of [[τ ]] given
on Slide 52.)

The key property of the relations Cτ is that they are respected by the various syntax-forming operations of the PCF
language. This is summed up by the Proposition on Slide 65 which makes use of the following terminology.

Definition 7.1.1. For each typing environment Γ (= a finite partial function from variables to PCF types), a Γ-
substitution σ is a function mapping each variable x ∈ dom(Γ) to a closed PCF term σ(x) of type Γ(x). Recall
from Section 6.2 that a Γ-environment ρ is a function mapping each variable x ∈ dom(Γ) to an element ρ(x) of the
domain [[Γ(x)]]. We define

ρ CΓ σ
def⇔ ∀x ∈ dom(Γ) . ρ(x) CΓ(x) σ(x).
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Definition of d Cτ M (d ∈ [[τ ]],M ∈ PCFτ )

d Cnat M
def⇔ (d ∈ N ⇒ M ⇓nat succd(0))

d Cbool M
def⇔ (d = true ⇒ M ⇓bool true)

& (d = false ⇒ M ⇓bool false)

d Cτ→τ ′ M
def⇔ ∀e,N (e Cτ N ⇒ d(e) Cτ ′ M N)

Slide 64

Fundamental property of the relations Cτ

Proposition. If Γ `M : τ is a valid PCF typing, then for all
Γ-environments ρ and all Γ-substitutions σ

ρ CΓ σ ⇒ [[Γ `M ]](ρ) Cτ M [σ]

• ρ CΓ σ means that ρ(x) CΓ(x) σ(x) holds for each
x ∈ dom(Γ).

• M [σ] is the PCF term resulting from the simultaneous substitution
of σ(x) for x in M , each x ∈ dom(Γ).

Slide 65
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Note that the Fundamental Property of Cτ given on Slide 65 specialises in case Γ = ∅ to give

[[M ]] Cτ M

for all types τ and all closed PCF terms M : τ . (Here we are using the notation for denotations of closed terms
introduced on Slide 61.) Using this, we can complete the proof of the adequacy property, as shown on Slide 66.

Proof of [[M ]] = [[V ]] ⇒ M ⇓τ V (τ = nat , bool)

Case τ = nat .

V = succn(0) for some n ∈ N and hence

[[M ]] = [[succn(0)]]

⇒ n = [[M ]] Cτ M by Fundamental Property (Slide 65)

⇒M ⇓ succn(0) by definition of Cnat

Case τ = bool is similar.

Slide 66

7.2 Proof of the Fundamental Property of C
To prove the Proposition on Slide 65 we need the following properties of the formal approximation relations.

Lemma 7.2.1.

(i) ⊥ Cτ M holds for all M ∈ PCFτ .

(ii) For each M ∈ PCFτ , {d | d Cτ M} is a chain-closed subset of the domain [[τ ]]. Hence by (i), it is also an
admissible subset (cf. Slide 39).

(iii) If d2 v d1, d1 Cτ M1, and ∀V (M1 ⇓τ V ⇒ M2 ⇓τ V ), then d2 Cτ M2.

Proof. Each of these properties follows easily by induction on the structure of τ , using the definitions of Cτ and of the
evaluation relation ⇓τ .

Proof of the Proposition on Slide 65 [NON-EXAMINABLE]. We use Rule Induction for the inductively defined typ-
ing relation Γ `M : τ . Define

Φ(Γ,M, τ)
def⇔ Γ `M : τ & ∀ρ, σ (ρ CΓ σ ⇒ [[Γ `M ]](ρ) Cτ M [σ])

Then it suffices to show that Φ is closed under the axioms and rules in Figure 2 inductively defining the typing relation.

Case (:0). Φ(Γ,0,nat) holds because 0 Cnat 0.

Case (:succ). We have to prove that Φ(Γ,M,nat) implies Φ(Γ, succ(M),nat). But this follows from the easily
verified fact that

d Cnat M ⇒ s⊥(d) Cnat succ(M)

where s⊥ : N⊥ → N⊥ is the continuous function used in Section 6.2 to describe the denotation of successor terms,
succ(M).

Cases (:pred) and (:zero) are similar to the previous case.
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Case (:bool). Φ(Γ, true, bool) holds because true Cbool true. Similarly for Φ(Γ, false, bool).

Case (:if ). It suffices to show that if d1 Cbool M1, d2 Cτ M2, and d3 Cτ M3, then

(13) if (d1, (d2, d3)) Cτ if M1 then M2 else M3

where if is the continuous function : B⊥×([[τ ]]×[[τ ]])→[[τ ]] of Proposition 3.2.2 that was used in Section 6.2 to describe
the denotation of conditional terms. If d1 = ⊥ ∈ B⊥, then if (d1, (d2, d3)) = ⊥ and (13) holds by Lemma 7.2.1(i). So
we may assume d1 6= ⊥, in which case either d1 = true or d1 = false . We consider the case d1 = true; the argument
for the other case is similar.

Since true = d1 Cbool M1, by the definition of Cbool (Slide 64) we haveM1⇓bool true. It follows from rule (⇓if1)
in Figure 3 that

∀V (M2 ⇓τ V ⇒ if M1 then M2 else M3 ⇓τ V ).

So Lemma 7.2.1(iii) applied to d2 Cτ M2 yields that

d2 Cτ if M1 then M2 else M3

and then since d2 = if (true, (d2, d3)) = if (d1, (d2, d3)), we get (13), as required.

Case (:var). Φ(Γ, x,Γ(x)) holds because if ρ CΓ σ, then for all x ∈ dom(Γ) we have [[Γ ` x]](ρ)
def
= ρ(x) CΓ(x)

σ(x)
def
= x[σ].

Case (:fn). Suppose Φ(Γ[x 7→ τ ],M, τ ′) and ρ CΓ σ hold. We have to show that [[Γ ` fnx : τ .M ]](ρ) Cτ→τ ′

(fnx : τ .M)[σ], i.e. that d Cτ N implies

(14) [[Γ ` fnx : τ .M ]](ρ)(d) Cτ ′ ((fnx : τ .M)[σ])N.

From Slide 58 we have

(15) [[Γ ` fnx : τ .M ]](ρ)(d) = [[Γ[x 7→ τ ] `M ]](ρ[x 7→ d]).

Since (fnx : τ .M)[σ] = fnx : τ .M [σ] and (M [σ])[N/x] = M [σ[x 7→ N ]], by rule (⇓cbn) in Figure 3 we have

(16) ∀V (M [σ[x 7→ N ]] ⇓τ ′ V ⇒ ((fnx : τ .M)[σ])N ⇓τ ′ V ).

Since ρ CΓ σ and d Cτ N , we have ρ[x 7→ d] CΓ[x 7→τ ] σ[x 7→ N ]; so by Φ(Γ[x 7→ τ ],M, τ ′) we have

[[Γ[x 7→ τ ] `M ]](ρ[x 7→ d]) Cτ ′ M [σ[x 7→ N ]].

Then (14) follows from this by applying Lemma 7.2.1(iii) to (15) and (16).

Case (:app). It suffices to show that if d1 Cτ→τ ′ M1 and d2 Cτ M2, then d1(d2) Cτ ′ M1M2. But this follows
immediately from the definition of Cτ→τ ′ .

Case (:fix). Suppose Φ(Γ,M, τ → τ) holds. For any ρ CΓ σ, we have to prove that

(17) [[Γ ` fix(M)]](ρ) Cτ fix(M)[σ].

Referring to Slide 58, we have [[Γ ` fix(M)]](ρ) = fix (f), where f def
= [[Γ `M ]](ρ). By Lemma 7.2.1(ii)

S
def
= {d | d Cτ fix(M)[σ]}

is an admissible subset of the domain [[τ ]]. So by Scott’s Fixed Point Induction Principle (Slide 40) to prove (17) it
suffices to prove

∀d ∈ [[τ ]] (d ∈ S ⇒ f(d) ∈ S).

Now since ρ CΓ σ, by Φ(Γ,M, τ→τ) and by definition of f we have f Cτ→τ M [σ]. So if d ∈ S, i.e. d Cτ fix(M)[σ],
then by definition of Cτ→τ , it is the case that

(18) f(d) Cτ (M [σ])(fix(M)[σ]).

Rule (⇓fix) in Figure 3 implies

(19) ∀V ((M [σ])(fix(M)[σ]) ⇓τ V ⇒ fix(M)[σ] ⇓τ V ).

Then applying Lemma 7.2.1(iii) to (18) and (19) yields f(d) Cτ fix(M)[σ], i.e. f(d) ∈ S, as required.
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7.3 Extensionality
Recall the notion of contextual equivalence of PCF terms from Slide 47. The contextual preorder is the one-sided
version of this relation defined on Slide 67. Clearly

Γ `M1
∼=ctx M2 : τ ⇔ (Γ `M1 ≤ctx M2 : τ & Γ `M2 ≤ctx M1 : τ).

As usual we write M1 ≤ctx M2 : τ for ∅ `M1 ≤ctx M2 : τ in case M1 and M2 are closed terms.
The formal approximation relations Cτ actually characterise the PCF contextual preorder between closed terms, in

the sense shown on Slide 68.

Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment

Γ, the relation Γ `M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ `M1 : τ and Γ `M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are
closed terms of type γ, where γ = nat or γ = bool ,
and for all values V : γ,

C[M1] ⇓γ V ⇒ C[M2] ⇓γ V.

Slide 67

Contextual preorder from formal approximation

Proposition. For all PCF types τ and all closed terms
M1,M2 ∈ PCFτ

M1 ≤ctx M2 : τ ⇔ [[M1]] Cτ M2.

Slide 68
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Proof of the Proposition on Slide 68. It is not hard to prove that for closed terms M1,M2 ∈ PCFτ , M1 ≤ctx M2 : τ
holds if and only if for all M ∈ PCFτ→bool

MM1 ⇓bool true ⇒ MM2 ⇓bool true.

Now if [[M1]] Cτ M2, then for any M ∈ PCFτ→bool since by the Fundamental Property of C we have
[[M ]] Cτ→bool M , the definition of Cτ→bool implies that

(20) [[MM1]] = [[M ]]([[M1]]) Cbool MM2.

So if MM1 ⇓bool true, then [[MM1]] = true (by the Soundness property) and hence by definition of Cbool from (20)
we get MM2 ⇓bool true. Thus using the characterisation of ≤ctx mentioned above, we have M1 ≤ctx M2 : τ .

This establishes the right-to-left implication on Slide 68. For the converse, it is enough to prove

(21) (d Cτ M1 & M1 ≤ctx M2 : τ) ⇒ d Cτ M2.

For then if M1 ≤ctx M2 : τ , since [[M1]] Cτ M1 (by the Fundamental Property), (21) implies [[M1]] Cτ M2. Property
(21) follows by induction on the structure of the type τ , using the following easily verified properties of ≤ctx:

• If τ = nat or bool , then M1 ≤ctx M2 : τ implies

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V ).

• If M1 ≤ctx M2 : τ → τ ′, then M1M ≤ctx M2M : τ ′, for all M : τ .

The bi-implication on Slide 68 allows us to transfer the extensionality properties enjoyed by the domain partial
ordersv to the contextual preorder, as shown on Slide 69. (These kind of properties of PCF were first proved by Milner
1977, First Context Lemma, page 6.)

Extensionality properties of≤ctx

For τ = bool or nat , M1 ≤ctx M2 : τ holds if and only if

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V ).

At a function type τ → τ ′, M1 ≤ctx M2 : τ → τ ′ holds if and
only if

∀M : τ (M1M ≤ctx M2M : τ ′).

Slide 69
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Proof of the properties on Slide 69. The ‘only if’ directions are easy consequences of the definition of ≤ctx.
For the ‘if’ direction in case τ = bool or nat , we have

[[M1]] = [[V ]]⇒M1 ⇓τ V by the adequacy property
⇒M2 ⇓τ V by assumption

and hence [[M1]] Cτ M2 by definition of C at these ground types. Now apply the Proposition on Slide 68.
For the ‘if’ direction in case of a function type τ → τ ′, we have

d Cτ M ⇒ [[M1]](d) Cτ ′ M1M since [[M1]] Cτ M1

⇒ [[M1]](d) Cτ ′ M2M by (21), since M1M ≤ctx M2M : τ ′

by assumption

and hence [[M1]] Cτ→τ ′ M2 by definition of C at type τ → τ ′. So once again we can apply the Proposition on Slide 68
to get the desired conclusion.

7.4 Exercises
Exercise 7.4.1. For any PCF type τ and any closed terms M1,M2 ∈ PCFτ , show that

(22) ∀V : τ (M1 ⇓τ V ⇔ M2 ⇓τ V ) ⇒ M1
∼=ctx M2 : τ.

[Hint: combine the Proposition on Slide 68 with Lemma 7.2.1(iii).]

Exercise 7.4.2. Use (22) to show that β-conversion is valid up to contextual equivalence in PCF, in the sense that for
all fnx : τ .M1 ∈ PCFτ→τ ′ and M2 ∈ PCFτ

(fnx : τ .M1)M2
∼=ctx M1[M2/x] : τ ′.

Exercise 7.4.3. Is the converse of (22) valid at all types? [Hint: recall the extensionality property of ≤ctx at function
types (Slide 69) and consider the terms fix(fn f : (nat → nat) . f) and fnx : nat .fix(fnx′ : nat . x′) of type
nat → nat .]
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8 Full Abstraction
8.1 Failure of full abstraction
As we saw on Slide 49, the adequacy property implies that contextual equivalence of two PCF terms can be proved by
showing that they have equal denotations: [[M1]] = [[M2]] ∈ [[τ ]] ⇒ M1

∼=ctx M2 : τ . Unfortunately the converse is
false: there are contextually equivalence PCF terms with unequal denotations.

Proof principle

For all types τ and closed terms M1,M2 ∈ PCFτ ,

[[M1]] = [[M2]] in [[τ ]] =⇒ M1
∼=ctx M2 : τ .

Hence, to prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]] .

Slide 70

Full abstraction

A denotational model is said to be fully abstract whenever denota-
tional equality characterises contextual equivalence.

I The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms
with different denotations.

Slide 71
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In general one says that a denotational semantics is fully abstract if contextual equivalence coincides with equality
of denotation. Thus the denotational semantics of PCF using domains and continuous functions fails to be fully abstract.
The classic example demonstrating this failure is due to Plotkin (1977) and involves the parallel-or function shown on
Slide 72.

Parallel-or function

is the continuous function por : B⊥→ (B⊥→ B⊥) defined by

por true false ⊥
true true true true

false true false ⊥
⊥ true ⊥ ⊥

Slide 72

Contrast por with the ‘sequential-or’ function shown on Slide 73. Both functions give the usual boolean ‘or’
function when restricted to {true, false}, but differ in their behaviour at arguments involving the element ⊥ denoting
‘non-termination’. Note that por(d1, d2) = true if either of d1 or d2 is true , even if the other argument is ⊥; whereas
orelse(d1, d2) = true implies d1 6= ⊥.

Left sequential-or function

The function orelse : B⊥→ (B⊥→ B⊥) defined by

orelse true false ⊥
true true true true

false true false ⊥
⊥ ⊥ ⊥ ⊥

is the denotation of the PCF term

fnx : bool . fnx′ : bool . if x then true else x′

of type bool → (bool → bool).

Slide 73

As noted on Slide 73, orelse can be defined in PCF, in the sense that there is a closed PCF term M :
bool → (bool → bool) with [[M ]] = orelse. This term M tests whether its first argument is true or false (and so
diverges if that first argument diverges), in the first case returning true (leaving the second argument untouched) and
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in the second case returning the second argument. By contrast, for por we have the Proposition stated on Slide 74.
We will not give the proof of this proposition here. Plotkin (1977) proves it via an ‘Activity Lemma’, but there are
alternative approaches using ‘stable’ continuous functions (Gunter 1992, p 181), or using ‘sequential logical relations’
(Sieber 1992). The key idea is that evaluation in PCF proceeds sequentially. So whatever P is, evaluation of P M1M2

must at some point involve full evaluation of either M1 or M2 (P cannot ignore its arguments if it is to return true in
some cases and false in others); whereas an algorithm to compute por at a pair of arguments must compute the values
of those arguments ‘in parallel’ in case one diverges whilst the other yields the value true .

One can exploit the undefinability of por in PCF to manufacture a pair of contextually equivalent closed terms in
PCF with unequal denotations. Such a pair is given on Slide 75.

Undefinability of parallel-or

Proposition. There is no closed PCF term

P : bool → (bool → bool)

satisfying

[[P ]] = por : B⊥ → (B⊥ → B⊥) .

Slide 74

Parallel-or test functions

For i = 1, 2 define

Ti
def
= fn f : bool → (bool → bool) .

if (f true Ω) then

if (f Ω true) then

if (f false false) then Ω else Bi

else Ω

else Ω

where B1
def
= true, B2

def
= false,

and Ω
def
= fix(fnx : bool . x).

Slide 75



8 FULL ABSTRACTION 67

Failure of full abstraction

Proposition.

T1
∼=ctx T2 : (bool → (bool → bool))→ bool

[[T1]] 6= [[T2]] ∈ (B⊥→ (B⊥→ B⊥))→ B⊥

Slide 76

Proof of the Proposition on slide 76. From the definition of por on Slide 72 and the definition of [[−]] in Section 6.2, it
is not hard to see that

[[Ti]](por) =

{
true if i = 1

false if i = 2.

Thus [[T1]](por) 6= [[T2]](por) and therefore [[T1]] 6= [[T2]].
To see that T1

∼=ctx T2 : (bool → (bool → bool))→ bool we use the extensionality results on Slide 69. Thus we
have to show for all M : bool → (bool → bool) and V ∈ {true, false} that

(23) T1M ⇓bool V ⇔ T2M ⇓bool V.

But the definition of Ti is such that TiM ⇓bool V only holds if

M true Ω ⇓bool true, M Ω true ⇓bool true, M false false ⇓bool false.

By the soundness property of Slide 48 this means that

[[M ]](true)(⊥) = true, [[M ]](⊥)(true) = true, [[M ]](false)(false) = false.

(Recall from Exercise 6.5.2 that [[Ω]] = ⊥.) It follows in that case that the continuous function [[M ]] : (B⊥×B⊥)→B⊥
coincides with por (see Exercise 8.4.1). But this is impossible, by the Proposition on Slide 74. Therefore (23) is
trivially satisfied for all M , and thus T1 and T2 are indeed contextually equivalent.

8.2 PCF+por
The failure of full abstraction for the denotational semantics of PCF can be repaired by extending PCF with extra terms
for those elements of the domain-theoretic model that are not definable in the language as originally given. We have
seen that por is one such element ‘missing’ from PCF, and one of the remarkable results in (Plotkin 1977) is that this is
the only thing we need add to PCF to obtain full abstraction. This is stated without proof on Slides 77 and 78.
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PCF+por

Expressions M ::= · · · | por(M,M)

Typing
Γ `M1 : bool Γ `M2 : bool

Γ ` por(M1,M2) : bool

Evaluation

M1 ⇓bool true

por(M1,M2) ⇓bool true

M2 ⇓bool true

por(M1,M2) ⇓bool true

M1 ⇓bool false M2 ⇓bool false

por(M1,M2) ⇓bool false

Slide 77

Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by
extending the definition on Slides 55–59 with the clause

[[Γ ` por(M1,M2)]](ρ)
def
=

por([[Γ `M1]](ρ))([[Γ `M2]](ρ))

where por : B⊥→ (B⊥→ B⊥) is as on Slide 72.

This denotational semantics is fully abstract for contextual
equivalence of PCF+por terms:

Γ `M1
∼=ctx M2 : τ ⇔ [[Γ `M1]] = [[Γ `M2]].

Slide 78
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8.3 Fully abstract semantics for PCF
The evaluation of PCF terms involves a form of ‘sequentiality’ which is not reflected in the denotational semantics of
PCF using domains and continuous functions: the continuous function por does not denote any PCF term and this results
in a mis-match between denotational equality and contextual equivalence. But what precisely does ‘sequentiality’ mean
in general? Can we characterise it in an abstract way, independent of the particular syntax of PCF terms, and hence give
a more refined form of denotational semantics that is fully abstract for contextual equivalence for PCF (and for other
types of language besides the simple, pure functional language PCF)? These questions have motivated the development
much domain theory and denotational semantics since the appearance of (Plotkin 1977): see the survey by Ong (1995),
for example.

It is only recently that definitive answers have emerged even for such an apparently simple language as PCF.
O’Hearn and Riecke (1995) construct a fully abstract model of PCF by using certain kinds of ‘logical relation’ to
repair the deficiencies of the standard model we have described here. Although this does provide a solution, it does
not seem to give much insight into the nature of sequential computation. By contrast, Abramsky, Jagadeesan, and
Malacaria (2000) and Hyland and Ong (2000) solve the problem by introducing what appears to be a radically different
approach to giving semantics to programming languages (not just PCF), based upon certain kinds of two-player game:
see (Abramsky 1997) and (Hyland 1997) for introductions to this ‘game semantics’.

Finally, a negative result by Loader should be mentioned. Note that the material in Section 8.1 does not depend
upon the presence of numbers and arithmetic in PCF. Let PCF2 denote the fragment of PCF only involving bool and the
function types formed from it, true, false, conditionals, variables, function abstraction and application, and a divergent
term Ωbool : bool . Since B⊥ is a finite domain and since the function domain formed from finite domains is again finite,
the domain associated to each PCF2 type is finite.1 The domain model is adequate for PCF2 and hence there are only
finitely many different PCF2 terms of each type, up to contextual equivalence. Given these finiteness properties, and
the terribly simple nature of the language, one might hope that the following questions are decidable (uniformly in the
PCF2 type τ ):

• Which elements of [[τ ]] are definable by PCF2 terms?

• When are two PCF2 of type τ contextually equivalent?

Quite remarkably Loader (2001) shows that these are recursively undecidable questions.

8.4 Exercises
Exercise 8.4.1. Suppose that a monotonic function p : (B⊥ × B⊥)→ B⊥ satisfies

p(true,⊥) = true, p(⊥, true) = true, and p(false, false) = false.

Show that p coincides with the parallel-or function on Slide 72 in the sense that p(d1, d2) = por(d1)(d2), for all
d1, d2 ∈ B⊥.

Exercise 8.4.2. Show that even though there are two evaluation rules on Slide 77 with conclusion por(M1,M2) ⇓bool
true, nevertheless the evaluation relation for PCF+por is still deterministic (in the sense of Proposition 5.4.1).

Exercise 8.4.3. Give the axioms and rules for an inductively defined transition relation for PCF+por. This should take
the form of a binary relation M →M ′ between closed PCF+por terms. It should satisfy

M ⇓ V ⇔ M →∗ V

(where→∗ is the reflexive-transitive closure of→).

1A further simplification arises from the fact that if the domains D and D′ are finite, then they contain no non-trivial chains and
hence the continuous functions D→D′ are just the monotone functions.
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