Topic 7

Relating Denotational and Operational Semantics
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Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V' a value

Ml =[V]el] = My, V.
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Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V' a value

Ml =[V]el] = My, V.

NB. Adequacy does not hold at function types
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Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V' a value

M} =1V]el] =— M{,V.

NB. Adequacy does not hold at function types:
fnz:7.(hy:7.y)x] = [Mmax:7.2] :|7]—|7]

but
fnx:7.(hy:7y)x f._. ha:7x
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Adequacy proof idea
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe M Ms, fix(M'). o+ M) )
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CASE M= My My My: T—27% Mg:C

—

{or of GROIND TYPE |

90



M
-7’

2

~
N
o7
of-
GRo
unNd 1
Y'i?
E
!

Mot
A
. W
2. ned
d
Mere
A
5 il ™
o
_t_



Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe My Mo, fix(M').

2. S0 we proceed to prove a stronger statement that applies to
terms of arbitrary types and impIie?dequacy.
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe My Mo, fix(M').

2. S0 we proceed to prove a stronger statement that applies to
terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

[M] < M for all types T and all M € PCF;

where the formal approximation relations

<; C 7] x PCF-

are logically chosen to allow a proof by induction.
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Requirements on the formal approximation relations, |

We want that, for v € {nat, bool },

[\/\)[[M]] <y M implies YV([MH =[V] = M, V)J \/\/\,

adequacy
r]‘.:vx&ﬁ'

For e, MeRoRg MY =neEN = Mt P ™0 )

(otqhé/f M) <-._—;>”‘4 <ate/t\l = MY, 5 ?:tff“(g)) :
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Definitionof d <1, M (d € [y], M € PCF,)
for v € {nat, bool}

Q.
©)
=

n <nat M (neN = Ml,,, succ(0))

)

f

Q.
@

b bool M

)

(b = true = M J,,,; true)
& (b= false = M |,;,,; false)

NB. L4 M for sl MEPCRux
L dbst M for M MePCT g
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Proof of: [M/| <1, M implies adequacy

Case v = nat.

[M] = [V]
—> [M] = [succ”(0)] forsomen € N
— n=|M] <\ M

— M |} succ”(0) by definition of <1,,4¢

Case v = bool is similar.
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Requirements on the formal approximation relations, Il

We want to be able to proceed by induction.
» Consider the case M = M M.

~~ logical definition
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Definition of
f<oor M (f€([7] = [7]), M € PCF,_)

f ;s M

¥ vz e[r], N € PCF,

(x < N = f(z) < M N)
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Requirements on the formal approximation relations, lli

We want to be able to proceed by induction.
» Consider the case M = fix(M').

~~ admissibility property
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Admissibility property

Lemma. For all types T and M € PCEF',, the set
{de|r]|d< M}

is an admissible subset of |T].

97



Further properties

Lemma. For all types T, elements d, d’ € 7], and terms
M,N.V € PCF,,

1.1f dCd and d <, M then d <, M.

2.If d<is Mand YV (M| _ V = N|_V)
then d <1 N .
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Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.
» Considerthecase M =fnax : 7. M’ .

~~ substitutivity property for open terms
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Fundamental property

Theorem. Foralll' = (x1 — 71,..., 2, > Ty) and all
I'=M:7,if di < My, ..., d, <, M, then
[[F"M]][$1I—>d1,,$nl—>dn] <+ M[Ml/xl,,Mn/CEn]

I
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U ze ek, J’S'Y—Cﬁ
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Contextual preorder between PCF terms

Given PCF terms M, M>, PCF type 7, and a type environment

I', therelation | I' = My <gix Mo : T

is defined to hold iff

e Both the typings I' = M7 : 7 and |

'+ M5 : 7 hold.

e For all PCF contexts C for which C| M| and C|M>]| are

closed terms of type v, where v =
and for all values V' € PCF .,

nat orvy = bool,

C[Ml] UWV — C[MQ] UWV .
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Extensionality properties of <.

At a ground type v € {bool, nat },
My <ctx Mo : 7y holds if and only if

VVEPCny (Ml U,WV — MQU,VV) :

At a function type 7 — 7/,
My <.x M5 : 7 — 7/ holds if and only if

VM € PCF, (MlMéctx MQMZT/) :
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