Topic 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau . \ (\mathbf{fn} \ y : \tau . \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau . \ x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

$$\mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \not \! \downarrow_{\tau \to \tau} \mathbf{fn} \ x : \tau. \ x$$

Adequacy proof idea

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

 \blacktriangleright Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$. For or a ground type (i.e. not or bool) and for all terms M of type or and all values V of type or, [M]=[V]=>MJV. $M_1: \mathbb{Z} \rightarrow \mathcal{Y}$ $M_2: \mathbb{Z}$ CASE MEM, M2 TNOT OF GROUND TYPE!

M1: 77->8 CASE $M = f_{\infty}(M')$ We need a more general statement applicable to all types, and implying adequacy at ground ly ps.

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

relates senantirs & syntax, denotations Define { dz ⊆ [[Z]] × PCFz }ze-types. · Prove for all types z, and terms M of type z [MY Jz M TMY JAM (86 Enst, bool 3)

we will deduce Adequecy.

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$[\![M]\!] \lhd_\tau M$$
 for all types τ and all $M \in \mathrm{PCF}_\tau$

where the formal approximation relations

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$$

are *logically* chosen to allow a proof by induction.

· How should we define

In C[N M x PCFn

et ground type ne { net, book }?

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

Definition of
$$d \lhd_{\gamma} M$$
 $(d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$

$$b \lhd_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$
 & $(b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$

NB. I I not M for all MEPCFnot

I I book M for all MEPCFnot

Proof of: $[\![M]\!] \lhd_\gamma M$ implies adequacy

Case $\gamma = nat$.

$$\llbracket M
rbracket = \llbracket V
rbracket$$
 $\implies \llbracket M
rbracket = \llbracket \mathbf{succ}^n(\mathbf{0})
rbracket$ for some $n \in \mathbb{N}$
 $\implies n = \llbracket M
rbracket \lhd_{\gamma} M$
 $\implies M \Downarrow \mathbf{succ}^n(\mathbf{0})$ by definition of \lhd_{nat}

Case $\gamma = bool$ is similar.

It remains to define 4072 C ([OY) > [ZY]) × PCF 67Z It makes sense to do so composible onally in terms of $J_6 \subseteq I[GV \times PCF_6]$ Jz C [[Z]] x PCFz

But how?

We will proceed "logically" and shape the definition by understanding what is needed from it to be able to prove [M] Iz M
by shuctural induction on M.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

ightharpoonup Consider the case $M=M_1\,M_2$.

→ logical definition

CASE $M = M_1 M_2$ $M_1: \mathcal{O} \rightarrow \mathcal{T}, M_2: \mathcal{O}$ RTP IIM, M2 y dz M, M2 That is, [[M_2]] $J_z M_1 M_2$ By induction

[[M_1]] $J_{S \rightarrow Z} M_1$ and

[[M_2]] $J_0 M_2$ By induction Define donz S (NOV-) (ZZY) x PCF 6->Z felion-12) for Miffy it follows that
M:072

M:072

Mills Mil

Definition of

$$f \lhd_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$$

$$f \vartriangleleft_{\tau \to \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau}$$

$$(x \vartriangleleft_{\tau} N \Rightarrow f(x) \vartriangleleft_{\tau'} M N)$$

Inductive définition of { Sz? ze types

- · n snot M off (new => M. J. suce (0))
- bassel M If (b= true => MU true) (b= false => MU false)
- $f \leq_{r \geq r} M \quad \text{if} \quad \forall a, N.$ $d \leq_{r} N \Rightarrow f(a) \leq_{r} MN$
- ► Con we now prove YZYM. [M] sz M?

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \mathbf{fix}(M')$.

→ admissibility property

CASE M= fix (M!) M!: Z-> Z RTP: II fix (M1) y & fix (M1) By induction

[MI] 12-72 MI

? Scott Induction Edelle DId 12 fox (M1)} dazfor(mi) => ([m'y(a) azfor(mi)] fix [MI] 12 fox (MI)

 $\begin{bmatrix}
M^{1} & J & J & J & M^{1} \\
d & J & foc(M^{1})
\end{bmatrix} \Rightarrow \begin{bmatrix}
M^{1} & M(A) & J & M^{1}(focM^{1}) \\
J & J & J & foc(M^{1})
\end{bmatrix}$ $\begin{bmatrix}
M^{1} & M(A) & J & foc(M^{1}) \\
J & J & J & J
\end{bmatrix}$ $\begin{bmatrix}
M^{1} & M(A) & J & foc(M^{1}) \\
J & J & J
\end{bmatrix}$ wherever NUV=)NUV if 250 N Then 25 NI

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$\{ d \in [\![\tau]\!] \mid d \vartriangleleft_{\tau} M \}$$

is an admissible subset of $[\tau]$.

Further properties

Lemma. For all types τ , elements $d, d' \in [\tau]$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \lhd_{\tau} M$ then $d \lhd_{\tau} M$.
- 2. If $d \lhd_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \lhd_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

→ substitutivity property for open terms

CASE M=fnx: Z.M! where (xH)Z]+M!:Z! RTP [[fnx:7,M]] \\ Z>7 | fnx:7.M| 2de[zy.[[xHZ]+M'][xHd] that is, for all doeN, $[[xnz]+M'][xnd] <_{z'}(fnx:z.M')(N)$ MIN/x] IV implies (fn 2.7.M!) (N) IV

Fun domental Lemma

[for all d ozN,

[[x+>z]+M'][x+>d] <z, M'[N/x]

Fundamental property

Implications to Contextual Equivalence

Contextual preorder between PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- ullet Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts $\mathcal C$ for which $\mathcal C[M_1]$ and $\mathcal C[M_2]$ are closed terms of type γ , where $\gamma=nat$ or $\gamma=bool$, and for all values $V\in \mathrm{PCF}_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

Proposition For all PCF types and all closed PCF terms M_1, M_2 of type Z,

Misch M2: Tiff [Miy or M2

Extensionality properties of \leq_{ctx}

At a ground type
$$\gamma \in \{bool, nat\}$$
,
$$M_1 \leq_{\operatorname{ctx}} M_2 : \gamma \text{ holds if and only if}$$

$$\forall \, V \in \operatorname{PCF}_{\gamma} \left(M_1 \Downarrow_{\gamma} V \implies M_2 \Downarrow_{\gamma} V \right) \;.$$
 At a function type $\tau \to \tau'$,
$$M_1 \leq_{\operatorname{ctx}} M_2 : \tau \to \tau' \text{ holds if and only if}$$

$$\forall \, M \in \operatorname{PCF}_{\tau} \left(M_1 \, M \leq_{\operatorname{ctx}} M_2 \, M : \tau' \right) \;.$$