Topic 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

· d'approximates d' · d'provides the same or more information than

dtd'

Thesis

All domains of computation are partial orders with a least element.

All computable functions are monotonic.

if dEd' then f(d) I f(d') in monotonitity.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is

reflexive: $\forall d \in D. \ d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

anti-symmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

$$x \sqsubseteq x$$

$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq z \\ \hline x \sqsubseteq z & \end{array}$$

Domain of partial functions, $X \longrightarrow Y$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

```
f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)
```

Monotonicity

ullet A function f:D o E between posets is monotone iff $\forall d,d'\in D.\ d\sqsubseteq d'\Rightarrow f(d)\sqsubseteq f(d').$

$$\frac{x\sqsubseteq y}{f(x)\sqsubseteq f(y)}\quad (f \text{ monotone})$$

Example: Segnencing a state transformer with itself. f: (State > State) -> (State > 8tate) $f(w) = \omega_0 \omega = \lambda_s \in Sbto. \omega(\omega_s).$ Monotonicity for f: For u, v & State - State if usv then f(u) = f(o) So assume uIV.

That is, for all states s, if u(s) is defined. Then so is v(s) and u(s)=v(s). We 8how u² = v² That is, frall states, if u(us) is defined Then so is $V(\sigma(s))$ and They ari eque (. Indeed, suppose u(us) so defined Then u(s) is defined and 80 is v(3) with u(S) = v(S). Also v(us) is defined and v(us) = u(us). So, v(vs) = v(us) = u(us)is defined, and we are done.

Least Elements

Suppose that D is a poset and that S is a subset of D.

An element $d \in S$ is the *least* element of S if it satisfies

Example: $\forall x \in S. d \sqsubseteq x$.

The completely undefined function is least in the domain of partial functions.

- Note that because \sqsubseteq is anti-symmetric, S has at most one s,s' are least in 5 then 558 least element.
- Note also that a poset may not have least element.

80 S=5/

Pre-fixed points

Let D be a poset and $f:D\to D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f, if it exists, will be written

$$fix(f) = least element of fact) f(a) = de fact) f(a) = de fact)$$
by the two properties:

It is thus (uniquely) specified by the two properties:

$$f(fix(f)) \sqsubseteq fix(f)$$
 (lfp1)

$$\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d.$$
 (Ifp2)

Proof principle

2. Let D be a poset and let $f:D\to D$ be a function with a least pre-fixed point $fix(f)\in D$.

For all $x \in D$, to prove that $f(x) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

Proof principle

1.

$$f(fix(f)) \sqsubseteq fix(f)$$

2. Let D be a poset and let $f:D\to D$ be a function with a least pre-fixed point $fix(f)\in D$.

For all $x \in D$, to prove that $f(x) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

$$f(fnxf) = fixf$$

$$f(fnxf) = fix(f)$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

$$\frac{f(f\alpha f) = fix(f)}{f(f(f\alpha f))} = f(f\alpha f)$$

$$f(f(f\alpha f)) = f(f\alpha f)$$

$$f\alpha (f) = f(f\alpha f)$$

$$f\alpha (f) = f(f\alpha f)$$

Thesis*

All domains of computation are complete partial orders with a least element.

the information provided by a chain of elements in D

do 5 dr 5 --- 5 dr 5 --- (new)

con be joined as an element

(Linear dn) in D

Considering

do E dr 5 - - - 5 dr 5 - - (nEW) in D

Thesis*

Thesis*

All domains of computation are complete partial orders with a least element.

we will require That $f(L_n dn)$ is obtained All computable functions are continuous.

as the join of $f(do) \subseteq f(di) \subseteq --- \subseteq f(dn) \subseteq --$ (new)

That is, $f(U_n dn) = \bigcup_n f(dn)$.

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_n$:

$$\forall m \geq 0 . d_m \sqsubseteq \bigsqcup_{n \geq 0} d_n \tag{lub1}$$

$$\forall d \in D . (\forall m \ge 0 . d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n \ge 0} d_n \sqsubseteq d.$$
 (lub2)

A domain is a cpo that possesses a least element, \perp :

$$\forall d \in D . \bot \sqsubseteq d.$$

$$\bot \sqsubseteq x$$

$$x_i \sqsubseteq \bigsqcup_{n \ge 0} x_n$$
 $(i \ge 0 \text{ and } \langle x_n \rangle \text{ a chain})$

Domain of partial functions, $X \longrightarrow Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n>0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined otherwise} \end{cases}$$
 That is,
$$g(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined otherwise} \end{cases}$$

Domain of partial functions, $X \longrightarrow Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n) \text{, some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

- 1. For $d \in D$, $\bigsqcup_n d = d$.
- 2. For every chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ in D,

$$\bigsqcup_{n} d_{n} = \bigsqcup_{n} d_{N+n}$$

for all $N \in \mathbb{N}$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D,

if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

dr 5 er er Ellnen

VR dR E Wn en

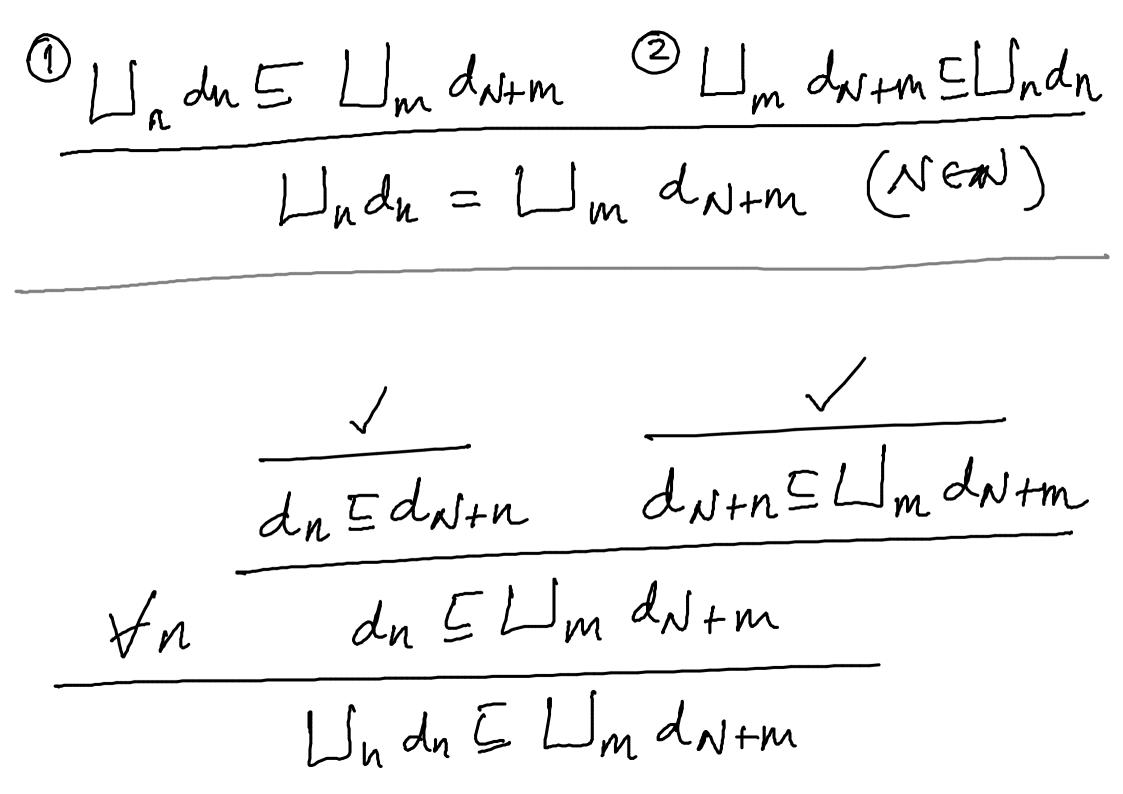
Un du E LIn en

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D, if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\frac{\forall n \ge 0 \, . \, x_n \sqsubseteq y_n}{\bigsqcup_n x_n \sqsubseteq \bigsqcup_n y_n} \quad (\langle x_n \rangle \text{ and } \langle y_n \rangle \text{ chains})$$

J Yn d Ed d E Und Und Ed

d= Und



Vm dN+m E Undn Um dN+m E Wndn Consider 2 double chain: dm,n (m,n EN) ti<j, k<l. di, k ⊑dj,e $d_{0,n} \subseteq d_{1,n} \subseteq \cdots$ do,1 = d1,1 = d2,1 = --- = dm,1 = --do,0 E d1,0 E d2,0 E --- Edm,0 E ---

☐ do,n = ☐ d1,n = --do,n = d1,n = ... do,1 = d1,1 = d2,1 = --- = dm,1 = --do,0 € d1,0 € d2,0 € --- € dm,0 € --- □ do,n = □ d1,n = --do,n = d1,n = · · · LI dm,1 do,1 = d1,1 = d2,1 = --- = dm,1 = ---I m dm, o do,0 = d1,0 = d2,0 = -- = dm,0 = ---

Udo,n ⊆ Uda,n ⊆ n Ul Ul E II II donin $UI \qquad UI \\ do,n \subseteq d_{1},n \subseteq \cdots$ Li Li dmin $d_{0,1} \sqsubseteq d_{1,1} \sqsubseteq d_{2,1} \sqsubseteq --- \sqsubseteq d_{m,1} \sqsubseteq ---$ UI Lidm,1 I I dm, o do,0 = d1,0 = d2,0 = --- = dm,0 = ---

☐ do,n = ☐ da,n = ☐ ☐ ☐ ☐ 5 III dmin don = d1, n = ... LI dm,1 $d_{0,1} \sqsubseteq d_{1,1} \sqsubseteq d_{2,1} \sqsubseteq --- \sqsubseteq d_{m,1} \sqsubseteq UI$ I m dm, o do,0 = d1,0 = d2,0 = -- = dn,0 =

dr, R = Undr, n Undr, n = mm ndm, n dr, R E L m L n dm, n Updk, R E Um Indmin

l=defmass(m,n)dm,n=de,e dele= Lkdk,R Vn dm,n 5 Ll R dR,R Undmin = Wadkik Um Un dmin E Likdrik

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \& n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,3} \sqsubseteq \dots$$

Moreover

$$\bigsqcup_{m\geq 0} \left(\bigsqcup_{n\geq 0} d_{m,n}\right) = \bigsqcup_{k\geq 0} d_{k,k} = \bigsqcup_{n\geq 0} \left(\bigsqcup_{m\geq 0} d_{m,n}\right).$$

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$$
 in E .

 $f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$ in E .

 $f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$ in E .

 $f(\bigcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$ in E .

 $f(\bigcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$ in E .

 $f(\bigcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$ in E .

Note

 $\forall n f(dn) \subseteq f(U_n dn)$

Continuity and strictness

- ullet If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

• If D and E have least elements, then the function f is strict iff $f(\bot) = \bot$.

Tarski's Fixed Point Theorem

Let $f: D \to D$ be a continuous function on a domain D. Then

f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

PROOF OF TARSKI'S FIXED POINT THEOREM

(1) $\bot = f(\bot) \Longrightarrow_{fmonstone} f^{h}(\bot) = f^{n+1}(\bot)$ fmonstone $f^{h}(\bot) = f^{h}(\bot) = f^{n+1}(\bot)$

 $L = f(L) = f^2(L) = -... = f^n(L) = -...$ (new)

(2)
$$f_{1} \times f_{1}$$
 is a fixed point

$$f\left(\sqcup_{n} f^{n}(\bot) \right)$$

$$= \lim_{n \to \infty} f\left(f^{n}(\bot) \right) = \lim_{n \to \infty} \left(f(\bot) = f^{2}(\bot) = \cdots \right)$$

$$= \lim_{n \to \infty} \left(\bot = f(\bot) = f^{2}(\bot) = \cdots \right)$$

$$= \lim_{n \to \infty} f^{n}(\bot).$$

(3) fruf, is least omongst prefixed points. Let d be a prefixed point, i.e. $f(a) \leq d$. Then, it follows by induction using that f is nowstone and That I is a least element, That Ynew. fn (4) 5 d. Hence, Litted.

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C rbracket$

```
while B \operatorname{\mathbf{do}} C
= fix(f_{[B],[C]}) \qquad f_{[B],[C]}: (Shte \rightarrow Shte) \rightarrow (Shte \rightarrow Shte)
= \bigsqcup_{n \geq 0} f_{[B],[C]}^{n}(\bot) \qquad \text{Continuous } !
  = \lambda s \in State.
                   \left\{ \begin{array}{ll} [\![C]\!]^k(s) & \text{if } k \geq 0 \text{ is such that } [\![B]\!]([\![C]\!]^k(s)) = false \\ & \text{and } [\![B]\!]([\![C]\!]^i(s)) = true \text{ for all } 0 \leq i < k \end{array} \right.  undefined if [\![B]\!]([\![C]\!]^i(s)) = true \text{ for all } i \geq 0
```