Topic 1

Introduction

What is this course about?

e (General area.

Formal methods: Mathematical techniques for the
specification, development, and verification of software
and hardware systems.

e Specific area.

Formal semantics: Mathematical theories for ascribing
meanings to computer languages.

Why do we care?

e Rigour.
. specification of programming languages
... justification of program transformations

e Insight.

. generalisations of notions computability
... higher-order functions
... data structures

e Feedback into language design.

. continuations
. monads

e Reasoning principles.

... Scott induction
... Logical relations
... Co-induction

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.
Concerned with giving mathematical models of programming
languages. Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Basic idea of denotational semantics

Syntax u Semantics

Recursive program +— Partial recursive function

P — [P]

Basic idea of denotational semantics

Syntax u Semantics

Recursive program +— Partial recursive function

Boolean circuit —> Boolean function
P — [P]

Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a :
| P| — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is

).

Basic example of denotational semantics (l)

IMP — syntax

Arithmetic expressions
AcAexp = n | L | A+A |

where n ranges over integers and
L over a specified set of locations 1L

Boolean expressions

BeBexp 1= true | false | A=A4| ...
| =B ...
Commands
C € Comm := skip | L:=A | C;C

| if Bthen C else C

Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — Z)
AAEY: SlL~> 7 ¢ Shle
where E eA_ii‘_E 0'4[[62/] (_g) S Z,
7

(...,-1,0,1,...}

State

(L — Z)

10

Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)

EeBEyp ,sesicli, 25}_574@)6@

where

Z = {...,—1,0,1,...}
B = {true, false}
State = (L — Z)

10

G . tmmondn -y skl {rraug({wmﬁ—%

Basic example of denotational semantics (ll)

Semantic functions _erf‘ &(
3‘\ 70,,';1&’ oW

A: Aexp — (State — 7Z) (f(O'WL S LG Ter
B: Bexp — (State — B) Q%(Z,

C: Comm — (State — State)
where Pé COW\M) g{égﬁ@ éf‘P’J@) € SM
—1,0,1,.
B = {true, false } ZE/& rew&m%%
State = (L — Z) iF(om T, c,owlr,%
eﬁLP m ¢fles

10

Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)
C: Comm — (State — State)

where
7 — {....-1,01,...} Lélbé_&
or B = {true, false } s€S
memony—V" " State = (L — 7Z) SCL)&Z,
cfore

- jﬁ\mdﬁw]@‘mm Lefowo Lo "M—&'%S

10

&C&{ hz.e(z] Avwle U fwwf\'&« Thet on
- ':'*f‘ftfg&‘a o, reallo vn ontpul” ()

c example of denotational semantics (lll)

Semantic function A
AYE)=n

Aln] = As € State.n ﬂd/ﬂ-] ()= .SCL)
A[L] = As € State. s(L) COWLFQg’\ Lo f?

AIAl + AQ]] = \s € Stdte. A[[Al]](s) + A[[AQ]] (S)
,d[AﬁAz]@ Y= A AUGE)+ ﬂ[ﬁzﬂ ()

Abuse 4 M&hm’k Ado s

W s}j Mb—e’(_ D"W M

Basic example of denotational semantics (1V)

Semantic function B

@)IZ’CTMM@)— Prue.

Btrue|] = s € State. true
Blfalse] = \s € State. false
BlA1 = As] = Xs € State. eq(AJA1](s), A[A2](s))
where eq(a, a') — true ifa =ad
T alse ifa # a'
e)= [Az
BllAr=A)G) - 16 S

fatse oA

12

— skl #auc&orvwer
CILPY : Swle— Sl Yelomm

SE———
A———

Basic example of denotational semantics (V)

Semantic function C

Ldﬁw—até

AN
[skip] = As € State.s 7£Dm o

[ekpN6>==s

NB: From now on the names of semantic functions are omitted!

13

LB T C else ¢ Y5) = L 1B te
T A ;i_r—r-l;ole example of Ipcggﬂésn;lity O:lro‘

Given partial functions [C], [C'] : State — State and a
function | B] : State — {true, false}, we can define

[if B then C else C'] =
As € State.if ([B](s), [C](s), [C"](s))

where

(

r ifb = true

if (b,x, ') = ¢
A) ' itb = false

\

14

Basic example of denotational semantics (VI)

Semantic function C

[L:=A] = X\se State. M e L.if (¢ =L, [A](s), s(£))

AT =/
[L:=A’Z_\@)=A£elL. [A06) £

sé) ol

15

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the
commands.

Toee)= Ten(es)

16

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:
C,s{s C' s |s"
C;C" s s" |
(Une com &Cn,sw*
Ve, s,s’ NchG)=s TﬁCS\L/S

[while B do C] - St N Sty
Ce Comm 1= --- | l/_ﬂ@_&— B oo Cl,_.

[while B do U
_ - [BYE) - [[CYE) -~

[while B do C] ; Sl —~ Selu

Evped
Godile B o)

T [3 on (clele B elic i
That i,

7[11,{ 2 s R, <

[ubile B do CYE)
_ [Lqﬁ 3 W(G)WLG Boo C) else Sh%:@@)
- /f U[B}acey,[wwe B oo YLD, <)
/[{mﬂ/lné [0{40&‘"@

[wh’bﬁ Rdocl(5)

_ aﬂf ;6[(1[374 (_s))[wbﬂcf% oo C) QIC%; 3)
M{’ Um) [nou-Semse /

Llew\w%’ e Q’MC/I/{ M z= 7).

[whle BdoCl
= MceSkle. ,/ (TR, [oWle 8 TYIDs)

;FI[BB T 3 @Wj WZ) "—7@@0 — gllc;?gf;)
b gy, ey (L8 A C)l[-lkelbole)

Fixed point property of
[while B do C]

[while B do C] = fip jc1([while B do C])

where, for each b : State — {true, false} and
c : State — State, we define

fo.c: (State — State) — (State — State)
as

. foe = Aw € (State—State). As € State. if (b(s), w(c(s)), s). J

[whle B docf= ﬁlﬁ(fm,zzcﬂ)

B]

17

Fixed point property of
[while B do C]

[while B do C] = fip) jc([while B do C])

where, for each b : State — {true, false} and
c : State — State, we define

fo.c: (State — State) — (State — State)
as

foe = Aw € (State—State). As € State. if (b(s), w(c(s)), s).

e Why does w = fjpgy [c7(w) have a solution?

e \What if it has several solutions—which one do we take to be
[while B do C?

17

7%3[5'1. Ty, icy) gy dppronmdim

Approximating [while B do (]
o Wo: Sl — Chle

S)
£)),

' C1)E

ey (@ BAM y

J[EB]M 5NG)

Wy = i(ﬁ'

[

(5) =

Na

),
<y
/UCS)>)’I‘)
s)) EC
; MBM
(%&(:
_ g; S
<)

T 7 L) -—.’L>

é VL B a()b
Y rnc;;:c [(,JI/MLQ C{'A
: /‘6 i—img
:Wy\, :fm P

{‘o% /L

.F

(A~

e sV _ n
g fisia o &)e‘:v\l]ﬁmﬁfﬁ

Approximating [while B do (]

—
Nniﬁ{f[[B]],[[C]]n(J—)
= \s € State.
C [CT%(s) 30 <k <n. [B]([C]*(s)) = false
< and V0 < i < k. [B]([C]*(s)) = true

T it V0 <i<n.[B]([C](s)) = true

18

ow}clf, ;Lf_u:e oo

RV

L, = As.%é
2 T = wo

o while plu oo C

2,

,= L
oy = Mo 7 ([Rled©),)= A8
fﬂ’(\ Q/{JL n7 1 &J,,L: AQ-S.

[ubile (e ol e U= I(L)?s30)

— As.S
= [skp]

/[/VQ d@muk#éw fTau/ofWK.

D« (State — State)

e Partial order L_on D:

wC w' iff forall s € State, if w is defined at s then
' so is w’ and moreover w(s) = w’'(s).

iff the graph of w is included in the graph of w’.

e Leastelement L. € D w.r.t. C:
1 = totally undefined partial function

= partial function with empty graph

(satisfies L. w, forall w € D).

19

) & ---
UC Ogb‘)’ —— ‘1“/—’.) %

o Tt aloli T sformer phosc gioph o

UVL IN 7&'0—6 [oon).

