
Visualization
LECTURE
ONE

chart literacy
1. anatomy of a plot
2. scale theory
3. scale perception
4. making comparisons
5. atomic plots

LECTURE
TWO

embedding
6. unsupervised learning
7. dimension reduction
8. self-supervised learning
9. content scales

the "grammar"
of plots

plots for data
exploration

Slides by Damon Wischik

6. Supervised versus unsupervised plotting

Supervised learning
§ What is the conditional distribution of 𝑌|𝑋 ?
§ How do I build a predictor / classifier?

Some plots are associated with supervised learning, some with unsupervised.

6. Supervised versus unsupervised plotting

Supervised learning
§ What is the conditional distribution of 𝑌|𝑋 ?
§ How do I build a predictor / classifier?

Generative (unsupervised) learning
§ What is the joint distribution of (𝑋, 𝑌)?
§ How do I generate new random datapoints?

Some plots are associated with supervised learning, some with unsupervised.

Who decides which variable is to be the predictor and which is to be the response?

Data set: World Bank country / demographic data

Country Name GDP per Capita
(PPP USD)

Population
Density (persons
per sq km)

Population
Growth Rate (%)

Urban Population
(%)

Life Expectancy at
Birth (avg years)

Afghanistan 1560.67 44.62 2.44 23.86 60.07

Albania 9403.43 115.11 0.26 54.45 77.16

Algeria 8515.35 15.86 1.89 73.71 70.75

Some of the linear models from Lecture 2

A splom (scatter plot matrix) shows all pairs of variables. If you don’t have a definite prediction
task in mind, this is a good starting point.

A splom is unwieldy for 12 variables. And what if we had 1200 or 12000?

The curse of dimensionality

• A model that relies on 10,000 features may be slow to train
• Is there a way to make it more tractable?
• Solution – dimensionality reduction. Speeds up training + helps visualization
• Caution: may help filter out some noise and result in better performance, but generally it

won’t as it loses information

Reminder: what you might have found out for the
digits dataset – not all pixels are equally informative
+ neighboring pixels are often highly correlated ⟶
can merge them?

The curse of dimensionality

• A random point in a unit square (1 × 1) will have less than a 0.4% chance of being located less
than 0.001 from a border (“extreme”) vs. 99.99% for a 10,000-dimensional unit hypercube1

• A distance between 2 random points in a 2D unit space ≈0.52, in 3D ≈0.66, in 1,000,000-D
≈408.25 2⇒ sparse, prone to overfitting

1 https://datascience.stackexchange.com/questions/45690/many-things-behave-differently-in-high-dimensional-space
2 https://mathworld.wolfram.com/HypercubeLinePicking.html
https://en.wikipedia.org/wiki/Hypercube

7. Dimension reduction / PCA
PCA is a tool that takes in high-dimensional data and
compresses it lossily into fewer dimensions.

7. Dimension reduction / PCA
PCA is a tool that takes in high-dimensional data and
compresses it lossily into fewer dimensions.

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

7. Dimension reduction / PCA
PCA is a tool that takes in high-dimensional data and
compresses it lossily into fewer dimensions.

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

7. Dimension reduction / PCA
Principal Component Analysis (PCA) first identifies a
hyperplane that lies closest to the data, and then
projects the data onto it.

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

Which line preserves maximum variance (i.e., likely loses
less information)?

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

How to choose the right hyperplane: preserving the variance

Which line preserves maximum variance? Solid line (c1)

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

How to choose the right hyperplane: preserving the variance

7. Dimension reduction / PCA

In linear regression, we model the data by
𝑦! = 𝛼 𝑥! + 𝛽 + 𝜀!

and learning consists in:
choosing the parameters 𝛼 and 𝛽 to minimize

𝐿 𝛼, 𝛽 =
1
2-
!"#

$

𝜀!%

𝐿 𝛼, 𝛽 =
1
2
-
!"#

$

(𝛼 𝑥! + 𝛽 − 𝑦!)%

predicted observed

7. Dimension reduction / PCA

If we regress 𝑦 against 𝑥, should we get the same answer as regressing 𝑥 against 𝑦?

If not, is there a way to express the relationship between 𝑥 and 𝑦 that doesn’t require an arbitrary
choice of response versus predictor?

ݕ ൌ 15.ͺ1 0.761ͻݔ
ݔ ൌ 6.72ͺ 0.65ͺ3ݕ
֜ ݕ ൌ െ10.22 1.51ͻݔ

If we regress ݕ against ݔ, should we get the same
answer as regressing ݔ against ݕ?

If not, is there a way to express the relationship
between ݔ and ݕ that doesn’t require an arbitrary
choice of response versus predictor?

ݕ ൌ 15.ͺ1 0.761ͻݔ
ݔ ൌ 6.72ͺ 0.65ͺ3ݕ
֜ ݕ ൌ െ10.22 1.51ͻݔ

If we regress ݕ against ݔ, should we get the same
answer as regressing ݔ against ݕ?

If not, is there a way to express the relationship
between ݔ and ݕ that doesn’t require an arbitrary
choice of response versus predictor?

7. Dimension reduction / PCA

Optimal projection: model the data by
𝑦! = 𝛼 𝑥! + 𝛽

choosing the parameters 𝛼 and 𝛽 to minimize:

𝐿 𝛼, 𝛽 =
1
2
-
!"#

$
𝑥!
𝑦! − 𝑝𝑟𝑜𝑗&,(

𝑥!
𝑦!

%

A better way to define this subspace: in 1d PCA, we model
the data by

𝑥!
𝑦! =

𝜇)
𝜇* + 𝜆!

𝛿)
𝛿*

+
𝜀),!
𝜀*,!

and learning consists in:
choosing the parameters 𝜇 and 𝛿 to minimize

𝐿 𝜇, 𝛿 =
1
2
-
!"#

$
𝜀),!
𝜀*,!

%

7. Dimension reduction / PCA

In linear regression, we model the data by
𝑦! = 𝛼 𝑥! + 𝛽 + 𝜀!

and learning consists in:
choosing the parameters 𝛼 and 𝛽 to minimize

𝐿 𝛼, 𝛽 =
1
2-
!"#

$

𝜀!%

In 1d PCA, we model the data by
𝑥!
𝑦! =

𝜇)
𝜇* + 𝜆!

𝛿)
𝛿*

+
𝜀),!
𝜀*,!

and learning consists in:
choosing the parameters 𝜇 and 𝛿 to minimize

𝐿 𝜇, 𝛿 =
1
2-
!"#

$
𝜀),!
𝜀*,!

%

7. Dimension reduction / PCA

A PCA gotcha:
Why do these two PCA plots, on two different
data features, come out so different?

Because we’re minimizing
1
2-
!"#

$

(𝜀),! + 𝜀*,!)%

and the 𝑥 and 𝑦 units are so different.

Solution: scale the 𝑥 and 𝑦 columns so they have the
same standard deviation, before doing the fit.

7. Dimension reduction / PCA

§ PCA is a tool that takes in high-dimensional data and
compresses it lossily into fewer dimensions.

§ This avoids an arbitrary choice of predictor vs response
variables.

§ We’ve shown it for 2d → 1d compression
but it also works for arbitrary dimensions 𝑁 → 𝐾.

How to run PCA

1
2
3
4
5
6
7
8
9
10

X = countries[features].values
pca = sklearn.decomposition.PCA()
pca_result = pca.fit_transform(X)

μ = pca.mean_
pred = μ + np.zeros_like(pca_result)
for k in range(L): # L = number of PCA components to use

λk = pca_result[:,k]
δk = pca.components_[k]
pred = pred + λk.reshape((-1,1)) * δk.reshape((1,-1))

We model 𝑁-dimensional data by picking a 𝐾-dimensional subspace, call it 𝑆+, and
representing each point by its projection onto that subspace,

�⃗�! = �⃗� +-
,"#

+

𝜆,,! 𝛿, + 𝜀!

The subspace 𝑆+ is specified by an offset �⃗� and a basis {𝛿#, … , 𝛿+}. We pick the
subspace so as to minimize the mean square error ∑ 𝜀! %.

TECHNICAL NOTE
There are multiple bases that could be chosen to specify a given
subspace. How does PCA pick a particular basis to specify 𝑆!? It
turns out, via the magic of linear algebra, that the optimal
subspaces are nested (𝑆" ⊂ 𝑆# ⊂ ⋯ ⊂ 𝑆$) and so a sensible choice
is to pick the components 𝛿% be an ordered basis such that

𝑆" = span 𝛿" , 𝑆# = span 𝛿", 𝛿# , …

Run PCA, then plot the first two components (𝜆!,# , 𝜆$,#) to get a nice visualization.

Nearby points in the PCA diagram should represent records with similar features.

Reasons for using dimension reduction

§ To test generalization error for an ML system
► Reduce the dataset to 1d. Take off 20% at one end, and use it as a validation set.
► This leads to a validation set that is qualitatively different to the training set. If we want to measure how well our ML

system generalizes, this is helpful.

§ To reduce the number of features, to speed up an ML system
► Suppose we have a categorical feature with 1000 levels, and we one-hot encode it. This gives 1000 features, which may

be too much for our ML system to digest.
► Use dimension reduction to make the features more palatable.

§ To find clusters, which we hope will be useful for data exploration
► However, if you know what you want to predict, it’s a supervised learning problem. There’s no point treating it as an

unsupervised problem.

What if the data isn’t linear?
1d PCA

better 1d
projection?

7. Dimension reduction / tSNE

What if the data isn’t linear? 1d PCA

better 1d
projection?

7. Dimension reduction / tSNE

Manifold Learning

7. Dimension reduction / tSNE

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

7. Dimension reduction / tSNE
tSNE is another tool for dimension reduction. It (sometimes) gives sensible results for nonlinear data.

the data

7. Dimension reduction / tSNE
tSNE is another tool for dimension reduction. It (sometimes) gives sensible results for nonlinear data.

the data lower-dimensional
version of the dataset

7. Dimension reduction / tSNE
tSNE is another tool for dimension reduction. It (sometimes) gives sensible results for nonlinear data.

the data lower-dimensional
version of the dataset

tSNE

Using tSNE

1. Each datapoint �⃗�! is to be encoded to a 𝐾-dimensional latent variable 𝜆!
2. Each �⃗�! has a certain set of nearest-𝑃 neighbours in the data space. Likewise each

𝜆! has a certain set of nearest-𝑃 neighbours in the latent space.
We’d like these two sets of neighbours to be as similar as possible, across all
datapoints. (The exact method isn’t quite this, but it’s close.)

3. We find the optimal encoding, using gradient descent.

4. The hyperparameter 𝑃 is the perplexity. It affects the fit.

1
2
3
4
5
6
7
8
9
10
11
12

X = countries[features].values
scale the columns, so they have the same variance
for i in range(len(features)):

X[:,i] = X[:,i] / np.std(X[:,i])

K = number of dimensions to reduce to
tsne = sklearn.manifold.TSNE(n_components=K)
tsne_results = tsne.fit_transform(X)

K=2 gives us a nice easy 2d plot
p1,p2 = tsne_results[:,0], tsne_results[:,1]
plt.scatter(p1, p2, alpha=.2)

tSNE tries to embed the data so as to preserve distances
between datapoints.
The coordinates in a tSNE plot don’t mean anything per se,
it’s only distances that are important — distance is a ratio
scale.

PCA looks for a linear coordinate system with
which to represent the data.
Each coordinate in a PCA plot measures “distance
along a PCA axis” — i.e. each coordinate is an
interval scale.

In the Mercator projection,
you can read off longitude
from the x-axis and latitude
from the y-axis

There’s no way to embed the entire globe in
2d and preserve distances, but there are
projections that do a reasonable job of
preserving distances over smaller areas

Using tSNE effectively

1. tSNE is very effective for visualisation and finding structure in high-dimensional
data.

2. It is often tricky to interpret and can be misleading.

3. Study its behaviour on simple cases and in steps.

Wattenberg et al. (2016). How to Use t-SNE Effectively
Visualisations: https://distill.pub/2016/misread-tsne/

Other dimensionality reduction techniques

§ Incremental PCA

§ Randomized PCA
§ Kernel PCA

§ Locally Linear Embedding (LLE)

§ Multidimensional Scaling

§ Isomap

§ Linear Discriminant Analysis (LDA)

► Note: Many algorithms (e.g., t-SNE) are computationally expensive. It is possible to chain several of them: e.g., run PCA
to quickly get rid of a large number of less useful dimensions, then apply another, more powerful, computationally
expensive and slower algorithm. The results will be on a par with the latter algorithm, but achieved in a fraction of the
time.

https://scikit-learn.org/stable/modules/manifold.html

When Manifold Learning doesn’t help

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

8. Self-supervised learning and embedding

§ Don’t think of PCA and tSNE as simply
“run an algorithm on a dataset, get a dimension-reduced version”

§ Think of them as learning an embedding from the dataset;
this embedding can then be applied to new unseen data

(𝑥, 𝑦) 𝜆

data embedding reconstruction

𝜇 + 𝜆 𝛿

8. Self-supervised learning and embedding

§ PCA learns a subspace (specified by 𝜇 and 𝛿)

§ The subspace entails an encoder or embedding function
𝑥, 𝑦 ↦ 𝜆

§ and also a decoder or reconstruction function
𝜆 ↦ 𝜇 + 𝜆 𝛿

(𝑥, 𝑦) 𝜆 𝜇 + 𝜆 𝛿

data embedding reconstruction

enc dec

8. Self-supervised learning and embedding

§ PCA learns a subspace (specified by 𝜇 and 𝛿)

§ The subspace entails an encoder or embedding function
𝑥, 𝑦 ↦ 𝜆

§ and also a decoder or reconstruction function
𝜆 ↦ 𝜇 + 𝜆 𝛿

(𝑥, 𝑦) 𝜆 𝜇 + 𝜆 𝛿

data embedding reconstruction

enc dec

TECHNICAL NOTE
How do we compute 𝜆 from a datapoint �⃗�?
PCA produces an orthonormal basis
𝛿", … , 𝛿! , and so we can compute the

components of the embedding very easily:
𝜆% = �⃗� − 𝜇 ⋅ 𝛿%

tSNE embedding

encoding / embedding
(from 2d data space to
1d embedding)

embedded values

decoding
(from 1d
back to 2d data space)

PCA embedding

I don’t know any library that provides a tSNE
encoder. It’s fairly easy to implement it ourselves, if
we look into the tSNE maths.

I don’t know of any publication that reports the
decoder for tSNE.

It takes some mathematical skill to define the
decoder—it doesn’t produce a value in the
dataspace, it produces a distribution over the
dataspace.

The decoder is also tricky to implement. Better to
use autoencoder neural networks.

PCA and inverse transform

pca = PCA(n_components = 154)
X_reduced = pca.fit_transform(X_train)
X_recovered = pca.inverse_transform(X_reduced)

This is a compressed version of
the MNIST data that preserves
95% variance

Here are some questions we can answer with an encoder/decoder pair
(shown here for PCA)

usa = countries.loc[countries['Country Name']=='USA']
china = countries.loc[countries['Country Name']=='China']
dec(0.5*enc(usa) + 0.5*enc(china))

“If the UK’s GDP were different, all else being equal,
what country would it be most like?”
• Let UK! be like the UK but with GDP=𝑔,

and plot enc UK! as 𝑔 varies
• For this dataset, “all else being equal” is daft. But for

other datasets it might be a useful question.

“What would a country half way between
the USA and China look like?”
• It’s pointless to use PCA enc+dec to answer this, because PCA is linear.

But with a nonlinear embedding like tSNE it can be informative.

“In what respects does the UK stand out,
compared to what we’d expect from other countries?”

uk = countries.loc[countries['Country Name']=='UK’]
uk – dec(enc(uk))

GDP: -1204
Unemployment%: 2.4
Life expectancy: -0.78
Internet users%: 4.95

Reasons for using embeddings

§ To make predictions when you have lots of unlabelled data and only a little labelled data, e.g. millions of
images, only a few of them labelled. This is called semi-supervised learning.
► Train an embedding using all the data. Hopefully we’ll learn a useful low-dimensional embedding, that picks out the

important features.
► Train a predictor that predicts the label from the embedding. If the features we found are useful, then the predictor

won’t need so much training data.

§ To be able to share the learning between many different tasks. This is called transfer learning.
► Widely used in NLP (see word embeddings) and computer vision

9. Content scales

Nominal: no
comparison is
meaningful

This is dumb.
How can I say “no
comparison is
meaningful” —
and at the same
time render onto
a 𝑦 scale?

Content scales
§ We’ve seen how to create a content scale, i.e. an embedding, for high-dimensional numerical data.
§ When we have nominal or ordinal data, we should pick an embedding that’s a useful reflection of the

content we’re interested in.

student i

student j

high similarity between work by i and j

low similarity

Students ordered alphabetically

Similarity between
student coursework
submissions

Students ordered by clustering
—reveals cliques of cheaters

Content scales

min and max February
temperature at stations
across the UK

1981
2017

A good scale, if the content I’m
interested in is the name of the
station (for easy lookup)

A good scale, if the content I’m
interested in is temperature
increase from 1981 to 2017

Embedding an ordinal scale, such as Likert items
Here’s a handy trick for getting useful numbers out of ordinal data. It’s not
deep and rigorous, but it is helpful.

Strongly
agree

Agree

Neither
agree nor
disagree

Disagree

Strongly
disagree

The number of
responses to
your survey,
across the
whole sample,
in each
category

1

0

Map each ordinal
answer to a number in
the range 0,1 , based
on its quantile within
the whole sample.

This trick lets you
compute average
responses, run linear
regression, etc.

Content versus metrical scales
§ In a remarkable period from 1250–1350, we started to use metrical scales, systematically. This changed how we see the

world.
See The measure of reality: quantification and western society, 1250–1600, by Alfred W. Crosby, 1997.

§ Computer power is letting us go back to useful content scales / embeddings.

Visualization
LECTURE
ONE

chart literacy
1. anatomy of a plot
2. scale theory
3. scale perception
4. making comparisons
5. atomic plots

LECTURE
TWO

embedding
6. unsupervised learning
7. dimension reduction
8. self-supervised learning
9. content scales

the "grammar"
of plots

plots for data
exploration

next stepsEPILOGUE

grammar + style + reason / arrangement

The Visual Display
of Quantitative Information

EDWARD R. TUFTE

S E C O N D E D I T I O N

R + ggplot2 Javascript + D3 Vega Lite and many more
libraries

rhetoric =

We have studied the grammar of graphics.
Grammar doesn't tell you how to create great charts. But it does give you tools to think systematically about your charts.
You also need • style • the skill to tell a story • good software libraries.

Practical 6
§ Data and code for Practical 6 can be found on: Github

(https://github.com/ekochmar/cl-datasci-pnp-
2021/tree/main/DSPNP_practical6)

§ It’s mainly about PCA and tSNE
§ Practical (‘ticking’) session over Zoom at the time allocated by your

demonstrator
§ At the practical, be prepared to discuss the task and answer the questions

about the code to get a ‘pass’
§ Upload your solutions (Jupyter notebook or Python code) to Moodle by the

deadline (Tuesday 1 December, 4pm)

