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Data Science: Principles and Practice

Ekaterina Kochmar

Lecture 7: Further DL Architectures
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• So far we’ve been looking at simpler models
• What is so peculiar about recognising images and language?
• Look closely into sensory modules

Perception
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• Inspired by research on the brain’s visual cortex
• Have been used in image recognition since 1980s
• Are used in image search, self-driving cars, video 

classification
• Are also used in other fields e.g., NLP, voice 

recognition

Convolutional Neural Networks
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Recurrent Neural Networks

Designed to process input sequences of arbitrary length.

Each hidden state is calculated based on the current input and the previous hidden 
state.

Main neural architecture for processing text, with each input being a word 
representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Convolutional Neural Networks
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From Visual Cortex

Experiments on cats in 1958-59: many neurons in the visual cortex have a small local 
receptive field

Receptive fields of different neurons may overlap

Hubel and Wiesel (1958). Single Unit Activity in Striate Cortex of Unrestrained Cats
Hubel and Wiesel (1959). Receptive Fields of Single Neurones in the Cat’s Striate Cortex
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From Visual Cortex

Some neurons react only to images of horizontal lines, others – only to lines with different 
orientations

Some neurons react to more complex patterns that are combinations of the lower-level 
patterns

Hubel and Wiesel (1958). Single Unit Activity in Striate Cortex of Unrestrained Cats
Hubel and Wiesel (1959). Receptive Fields of Single Neurones in the Cat’s Striate Cortex
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From Visual Cortex to CNNs
Neurocognitron (1980) gave early 
inspiration for and gradually evolved 
into convolutional neural networks.

LeNet-5 architecture introduced new 
building blocks – convolutional layers 
and pooling layers

Fukushima (1980). A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition
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From Visual Cortex to CNNs
Neurocognitron (1980) gave early 
inspiration for and gradually evolved 
into convolutional neural networks.

LeNet-5 architecture introduced new 
building blocks – convolutional layers 
and pooling layers

Fukushima (1980). A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition

Can you apply a regular DNN with fully 
connected layers to image recognition?

• Input of 100 × 100 pixels = 104
• First layer with 1,000 neurons

⇒ 10 million connections!
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Convolutional Layers

Only connect neurons in the first 
convolutional layer to the input pixels from 
the receptive field (focus on low-level 
features)

Only connect neurons in the second 
convolutional layer to the relevant small 
rectangle from the first layer (higher-level 
features)

Hierarchical structure at work

https://cs231n.github.io/convolutional-networks/#convert
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Convolutional Layers

Stride – distance between two consecutive receptive fields 

Zero padding – adding zeros around the input to make it fit certain dimensionality
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Filters

Filter (convolution kernel) is a set of 
weights

Feature map – a layer full of neurons using 
the same filter; highlights areas in an image 
that are most similar to the filter

Power of CNNs: if it learns to recognise a 
pattern in one location of an image, it can 
recognise it elsewhere. Traditional DNN can 
only recognise a pattern in a specific location
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Stacking Multiple Feature Maps

Multiple features maps are stacked on top of each other – 3D representation more 
appropriate

Feature maps applied to each of the RGB channels

https://www.researchgate.net/figure/Example-of-a-depthwise-separable-convolution-on-an-RGB-image-with-N-1_fig1_338593957
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Stacking Multiple Feature Maps

https://cs231n.github.io/convolutional-networks/#convert
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Pooling Layers

Pooling layers’ goal is to subsample
(shrink) the image to reduce the 
computational load, the memory usage, the 
number of parameters (i.e., to avoid 
overfitting), and make the network tolerate a 
bit of image shift (i.e., introduce location 
invariance).

Each neuron in the pooling layer is 
connected to the outputs of a limited number 
of neurons from the previous layer.

Need to define the size, the stride, and the 
padding type as before.

https://cs231n.github.io/convolutional-networks/#convert
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Types of Pooling

Pooling layers don’t contain weights. All 
they do is aggregate the input from the 
previous layer, e.g. using max or mean (avg)

With max pooling, only the max input value 
in each kernel makes it to the next layer. The 
other inputs are dropped.

This technique shrinks the image quite a lot: 
2-by-2 kernel with a stride of 2 results in 4-
times smaller image (75% drop!)

You may also apply it to channels (depth-
wise), in which case image dimensions stay 
the same but depth is reduced

https://cs231n.github.io/convolutional-networks/#convert
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Assemble a CNN

The image gets smaller and smaller as it progresses through the network, but also deeper and 
deeper as more feature maps are added

At the top of the stack – regular feedforward neural network composed of a few fully connected layers 
and ReLU activation

The final layer outputs predictions using softmax

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
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Recap: Learning Representations & Features

Automatically learning increasingly more complex feature detectors from the data.
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ImageNet Large Scale Visual Recognition Challenge

Ye (2018). Visual Object Detection from Lifelogs using Visual Non-lifelog Data
https://devopedia.org/imagenet
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ImageNet Large Scale Visual Recognition Challenge

https://semiengineering.com/new-vision-technologies-for-real-world-applications/
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LeNet-5

LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition 
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

MNIST hand-written digit recognition
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AlexNet

Krizhevsky et al. (2012). ImageNet Classification with Deep Convolutional Neural Networks 
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/

Top-5 error rate down to 17% (from 26%) on ImageNet
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GoogleNet

Szegedy et al. (2014). Going Deeper with Convolutions 
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

Top-5 error rate down to 7% on ImageNet
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Finally, Residual Network (ResNet)

He et al. (2015). Deep Residual Learning for Image Recognition
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/

Top-5 error rate under 3.6% on ImageNet… using 152 layers
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Other Visual Tasks

Oquab et al. (2015). Is object localization for free? – Weakly-supervised learning with convolutional neural networks; Stewart & Andriluka
(2015). End-to-end people detection in crowded scenes; Shelhamer et al. (2016). Fully Convolutional Networks for Semantic Segmentation
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Recurrent Neural Networks
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Predicting the Future

RNNs are good for predicting future 
events (to a certain extent) – e.g., 
future stock market prices, next word in 
a sequence, next note in a melody, 
next move in a scene, etc.

Can work on sequences of arbitrary 
length unlike architectures we’ve 
discussed so far

Suitable for time-series data analysis
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Sequence Generation with RNNs

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Vinyals et al. (2015) Show and Tell: A Neural Image Caption Generator 
https://arxiv.org/pdf/1411.4555v2.pdf
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RNNs in a Nutshell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In traditional feedforward neural 
networks information flows in one 
direction only

At every time step, start learning “from 
scratch”

Recurrent units – connections 
pointing backwards

Block A here looks at the input from xt
and outputs ht
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RNNs in a Nutshell

In traditional feedforward neural 
networks information flows in one 
direction only

At every time step, start learning “from 
scratch”

Recurrent units – connections 
pointing backwards

Block A here looks at the input from xt
and outputs ht

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Let’s unroll this
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Unrolling the Network through Time

RNN contains multiple copies of the same network, each passing a message to a 
successor

At each time step t (frame) a recurrent neuron receives the inputs x(t) as well as its own 
output from the previous time step h(t-1)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Unrolling the Network through Time

Now we have two sets of weights: one for the inputs x(t) and the other for the outputs of 
the previous time step h(t-1)

Let’s call them wx and wh

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Mathematical Definition

Vectorised form:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)
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Memory Cells

Note that h(t) is a function of x(t) and h(t-1), where
h(t-1) is a function of x(t-1) and h(t-2), where

h(t-2) is a function…
⇒ h(t) is a function of all the inputs since time t=0
You can say that each cell has a form of memory

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Sequence-to-Sequence

• Example: Stock prices
• Input – prices for the last N days
• Output – prices predictions starting from N-1 to tomorrow 

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow
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Sequence-to-Vector

• Example: Sentiment analysis
• Input – sequence of words (e.g., in a review)
• Output – single sentiment score prediction (e.g., 0=hate, 1=love)

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow
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Vector-to-Sequence

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

• Example: Caption generation
• Input – single image
• Output – sequence of words in image caption
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Delayed Sequence-to-Sequence

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

• Example: Machine Translation
• Input – sequence of words in L1 (need to “wait” to the end to get the message)
• Output – sequence of words in L2
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Deep RNN

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow



43/38

Problems with RNNs

Problems with RNNs:
• Slow to train
• Vanishing and exploding gradients

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Term Dependencies Problem

Solution – Long Short-Term Memory (LSTM) cells 
Proposed in 1997 by Hochreiter and Schmidhuber, and improved over the years
Can be used pretty much like any other cell – implementation available in TensorFlow

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hochreiter & Schmidhuber (1997). Long Short-Term Memory  
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Long Short-Term Memory (LSTM) Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

What’s under the 
hood?
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Long Short-Term Memory (LSTM) Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• “Conveyor belts” in LSTMs
• Sigmoid function controlling how much information passes though the gates: from 0 

= none to 1 = “let it all through”
• h(t) – short-term state, c(t) – long-term state
• There are 3 types of gates in the cell: forget gate, input gate, and output gate
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(1) Forget Gate Layer

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• How much of the information from previous layers should be forgotten: 1 = “keep 
this in full”, 0 = “get rid of this”

• Example: forgetting the gender of the story characters when the narrative switches 
to a different character
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(2) Input Gate Layer

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• First, decide which values to update and then update these values ⇒ update the 
state: 1 = “keep this in full”, 0 = “get rid of this”

• Example: adding the gender of the new character in the story to replace the old one 
we are forgetting
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(2) Update to the Old Cell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Multiply the old state by ft “forgetting” things that we’ve decided to forget
• Add it × which is the new candidate, scaled by how much we need to update the 

state value
• Example: actually updating the information on the subject’s gender
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(3) Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Decide what we are going to output
• Example: output whether the subject of a verb is singular or plural so that we know 

what form of the verb to use next
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Peephole Connections

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• In basic LSTM, gate controllers can only look at the input x(t) and the previous short-
term state h(t-1)

• It may be useful to give them more context by allowing them to peek at the long-
term state as well

• Peephole connections: add c(t-1) to the forget and input gate, and c(t) to the output

Gers & Schmidhuber (2000). Recurrent Nets that Time and Count
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Gated Recurrent Unit (GRU)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Replace both state vectors with a single vector h(t-1)
• Introduce a single gate controller to control both forget and input gate: whenever a 

memory must be stored, the location where it will be stored should first be erased
• There is no output gate: a new gate controller controls which part of the previous 

state will be shown to the main layer

Cho et al. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation 



54/38

Practical 5
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Your task: Learning objectives
- The basics of CNNs
- Implementation of two building blocks in CNNs – convolutional and pooling layers 
with Keras and TensorFlow
- Application of CNNs to image analysis
- Classification of images from two popular image datasets
- Assignment: Build a CNN model to classify digits in the MNIST dataset and compare
the results to other ML models (e.g., from previous practicals)
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Practical 5 Logistics

- Data and code for Practical 5 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical5)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the 
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline 
(Thursday 26 November, 4pm) 

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical5
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