
1/13

Data Science: Principles and Practice

Ekaterina Kochmar

Lecture 7: Further DL Architectures

2/38

• So far we’ve been looking at simpler models
• What is so peculiar about recognising images and language?
• Look closely into sensory modules

Perception

3/38

• Inspired by research on the brain’s visual cortex
• Have been used in image recognition since 1980s
• Are used in image search, self-driving cars, video

classification
• Are also used in other fields e.g., NLP, voice

recognition

Convolutional Neural Networks

4/38

Recurrent Neural Networks

Designed to process input sequences of arbitrary length.

Each hidden state is calculated based on the current input and the previous hidden
state.

Main neural architecture for processing text, with each input being a word
representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

5/38

Data Science: Principles and Practice

Introduction to Convolutional Neural Networks (CNNs)01

CNN building blocks: convolutional and pooling layers02

Introduction to Recurrent Neural Networks (RNNs)03

RNN components, LSTM and GRU cells04

Practical 505

6/38

Convolutional Neural Networks

7/38

From Visual Cortex

Experiments on cats in 1958-59: many neurons in the visual cortex have a small local
receptive field

Receptive fields of different neurons may overlap

Hubel and Wiesel (1958). Single Unit Activity in Striate Cortex of Unrestrained Cats
Hubel and Wiesel (1959). Receptive Fields of Single Neurones in the Cat’s Striate Cortex

8/38

From Visual Cortex

Some neurons react only to images of horizontal lines, others – only to lines with different
orientations

Some neurons react to more complex patterns that are combinations of the lower-level
patterns

Hubel and Wiesel (1958). Single Unit Activity in Striate Cortex of Unrestrained Cats
Hubel and Wiesel (1959). Receptive Fields of Single Neurones in the Cat’s Striate Cortex

9/38

From Visual Cortex to CNNs
Neurocognitron (1980) gave early
inspiration for and gradually evolved
into convolutional neural networks.

LeNet-5 architecture introduced new
building blocks – convolutional layers
and pooling layers

Fukushima (1980). A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition

10/38

From Visual Cortex to CNNs
Neurocognitron (1980) gave early
inspiration for and gradually evolved
into convolutional neural networks.

LeNet-5 architecture introduced new
building blocks – convolutional layers
and pooling layers

Fukushima (1980). A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition

Can you apply a regular DNN with fully
connected layers to image recognition?

• Input of 100 × 100 pixels = 104
• First layer with 1,000 neurons

⇒ 10 million connections!

11/38

Convolutional Layers

Only connect neurons in the first
convolutional layer to the input pixels from
the receptive field (focus on low-level
features)

Only connect neurons in the second
convolutional layer to the relevant small
rectangle from the first layer (higher-level
features)

Hierarchical structure at work

https://cs231n.github.io/convolutional-networks/#convert

12/38

Convolutional Layers

Stride – distance between two consecutive receptive fields

Zero padding – adding zeros around the input to make it fit certain dimensionality

13/38

Filters

Filter (convolution kernel) is a set of
weights

Feature map – a layer full of neurons using
the same filter; highlights areas in an image
that are most similar to the filter

Power of CNNs: if it learns to recognise a
pattern in one location of an image, it can
recognise it elsewhere. Traditional DNN can
only recognise a pattern in a specific location

14/38

Filters

Filter (convolution kernel) is a set of
weights

Feature map – a layer full of neurons using
the same filter; highlights areas in an image
that are most similar to the filter

Power of CNNs: if it learns to recognise a
pattern in one location of an image, it can
recognise it elsewhere. Traditional DNN can
only recognise a pattern in a specific location

15/38

Filters

Filter (convolution kernel) is a set of
weights

Feature map – a layer full of neurons using
the same filter; highlights areas in an image
that are most similar to the filter

Power of CNNs: if it learns to recognise a
pattern in one location of an image, it can
recognise it elsewhere. Traditional DNN can
only recognise a pattern in a specific location

16/38

Stacking Multiple Feature Maps

Multiple features maps are stacked on top of each other – 3D representation more
appropriate

Feature maps applied to each of the RGB channels

https://www.researchgate.net/figure/Example-of-a-depthwise-separable-convolution-on-an-RGB-image-with-N-1_fig1_338593957

17/38

Stacking Multiple Feature Maps

https://cs231n.github.io/convolutional-networks/#convert

18/38

Pooling Layers

Pooling layers’ goal is to subsample
(shrink) the image to reduce the
computational load, the memory usage, the
number of parameters (i.e., to avoid
overfitting), and make the network tolerate a
bit of image shift (i.e., introduce location
invariance).

Each neuron in the pooling layer is
connected to the outputs of a limited number
of neurons from the previous layer.

Need to define the size, the stride, and the
padding type as before.

https://cs231n.github.io/convolutional-networks/#convert

19/38

Types of Pooling

Pooling layers don’t contain weights. All
they do is aggregate the input from the
previous layer, e.g. using max or mean (avg)

With max pooling, only the max input value
in each kernel makes it to the next layer. The
other inputs are dropped.

This technique shrinks the image quite a lot:
2-by-2 kernel with a stride of 2 results in 4-
times smaller image (75% drop!)

You may also apply it to channels (depth-
wise), in which case image dimensions stay
the same but depth is reduced

https://cs231n.github.io/convolutional-networks/#convert

20/38

Assemble a CNN

The image gets smaller and smaller as it progresses through the network, but also deeper and
deeper as more feature maps are added

At the top of the stack – regular feedforward neural network composed of a few fully connected layers
and ReLU activation

The final layer outputs predictions using softmax

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

21/38

Recap: Learning Representations & Features

Automatically learning increasingly more complex feature detectors from the data.

22/38

ImageNet Large Scale Visual Recognition Challenge

Ye (2018). Visual Object Detection from Lifelogs using Visual Non-lifelog Data
https://devopedia.org/imagenet

23/38

ImageNet Large Scale Visual Recognition Challenge

https://semiengineering.com/new-vision-technologies-for-real-world-applications/

24/38

LeNet-5

LeCun et al. (1998). Gradient-Based Learning Applied to Document Recognition
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

MNIST hand-written digit recognition

25/38

AlexNet

Krizhevsky et al. (2012). ImageNet Classification with Deep Convolutional Neural Networks
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/

Top-5 error rate down to 17% (from 26%) on ImageNet

26/38

GoogleNet

Szegedy et al. (2014). Going Deeper with Convolutions
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

Top-5 error rate down to 7% on ImageNet

27/38

Finally, Residual Network (ResNet)

He et al. (2015). Deep Residual Learning for Image Recognition
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/

Top-5 error rate under 3.6% on ImageNet… using 152 layers

28/38

Other Visual Tasks

Oquab et al. (2015). Is object localization for free? – Weakly-supervised learning with convolutional neural networks; Stewart & Andriluka
(2015). End-to-end people detection in crowded scenes; Shelhamer et al. (2016). Fully Convolutional Networks for Semantic Segmentation

29/38

Recurrent Neural Networks

30/38

Predicting the Future

RNNs are good for predicting future
events (to a certain extent) – e.g.,
future stock market prices, next word in
a sequence, next note in a melody,
next move in a scene, etc.

Can work on sequences of arbitrary
length unlike architectures we’ve
discussed so far

Suitable for time-series data analysis

31/38

Sequence Generation with RNNs

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Vinyals et al. (2015) Show and Tell: A Neural Image Caption Generator
https://arxiv.org/pdf/1411.4555v2.pdf

32/38

RNNs in a Nutshell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In traditional feedforward neural
networks information flows in one
direction only

At every time step, start learning “from
scratch”

Recurrent units – connections
pointing backwards

Block A here looks at the input from xt
and outputs ht

33/38

RNNs in a Nutshell

In traditional feedforward neural
networks information flows in one
direction only

At every time step, start learning “from
scratch”

Recurrent units – connections
pointing backwards

Block A here looks at the input from xt
and outputs ht

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Let’s unroll this

34/38

Unrolling the Network through Time

RNN contains multiple copies of the same network, each passing a message to a
successor

At each time step t (frame) a recurrent neuron receives the inputs x(t) as well as its own
output from the previous time step h(t-1)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

35/38

Unrolling the Network through Time

Now we have two sets of weights: one for the inputs x(t) and the other for the outputs of
the previous time step h(t-1)

Let’s call them wx and wh

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

36/38

Mathematical Definition

Vectorised form:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)

E. Kochmar DSPNP: Lecture 3 13 November 33 / 34

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)

E. Kochmar DSPNP: Lecture 3 13 November 33 / 34

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)

E. Kochmar DSPNP: Lecture 3 13 November 33 / 34

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)

E. Kochmar DSPNP: Lecture 3 13 November 33 / 34

Formulas

ht = �(xT(t) · wx + hT(t�1) · wh + b)

H(t) = �(X(t) ·Wx + H(t�1) ·Wh + b)

H(t) = �([X(t) H(t�1)] ·W + b) with W T = [Wx Wh]

W = 
Wx

Wh

�
(1)

E. Kochmar DSPNP: Lecture 3 13 November 33 / 34

37/38

Memory Cells

Note that h(t) is a function of x(t) and h(t-1), where
h(t-1) is a function of x(t-1) and h(t-2), where

h(t-2) is a function…
⇒ h(t) is a function of all the inputs since time t=0
You can say that each cell has a form of memory

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

38/38

Sequence-to-Sequence

• Example: Stock prices
• Input – prices for the last N days
• Output – prices predictions starting from N-1 to tomorrow

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

39/38

Sequence-to-Vector

• Example: Sentiment analysis
• Input – sequence of words (e.g., in a review)
• Output – single sentiment score prediction (e.g., 0=hate, 1=love)

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

40/38

Vector-to-Sequence

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

• Example: Caption generation
• Input – single image
• Output – sequence of words in image caption

41/38

Delayed Sequence-to-Sequence

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

• Example: Machine Translation
• Input – sequence of words in L1 (need to “wait” to the end to get the message)
• Output – sequence of words in L2

42/38

Deep RNN

Geron (2017). Hands-on Machine Learning with Scikit-Learn & TensorFlow

43/38

Problems with RNNs

Problems with RNNs:
• Slow to train
• Vanishing and exploding gradients

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

44/38https://www.nytimes.com/interactive/2015/03/08/opinion/sunday/algorithm-human-quiz.html

45/38

Long Term Dependencies Problem

Solution – Long Short-Term Memory (LSTM) cells
Proposed in 1997 by Hochreiter and Schmidhuber, and improved over the years
Can be used pretty much like any other cell – implementation available in TensorFlow

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hochreiter & Schmidhuber (1997). Long Short-Term Memory

46/38

Long Short-Term Memory (LSTM) Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

What’s under the
hood?

47/38

Long Short-Term Memory (LSTM) Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• “Conveyor belts” in LSTMs
• Sigmoid function controlling how much information passes though the gates: from 0

= none to 1 = “let it all through”
• h(t) – short-term state, c(t) – long-term state
• There are 3 types of gates in the cell: forget gate, input gate, and output gate

48/38

(1) Forget Gate Layer

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• How much of the information from previous layers should be forgotten: 1 = “keep
this in full”, 0 = “get rid of this”

• Example: forgetting the gender of the story characters when the narrative switches
to a different character

49/38

(2) Input Gate Layer

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• First, decide which values to update and then update these values ⇒ update the
state: 1 = “keep this in full”, 0 = “get rid of this”

• Example: adding the gender of the new character in the story to replace the old one
we are forgetting

50/38

(2) Update to the Old Cell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Multiply the old state by ft “forgetting” things that we’ve decided to forget
• Add it × which is the new candidate, scaled by how much we need to update the

state value
• Example: actually updating the information on the subject’s gender

51/38

(3) Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Decide what we are going to output
• Example: output whether the subject of a verb is singular or plural so that we know

what form of the verb to use next

52/38

Peephole Connections

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• In basic LSTM, gate controllers can only look at the input x(t) and the previous short-
term state h(t-1)

• It may be useful to give them more context by allowing them to peek at the long-
term state as well

• Peephole connections: add c(t-1) to the forget and input gate, and c(t) to the output

Gers & Schmidhuber (2000). Recurrent Nets that Time and Count

53/38

Gated Recurrent Unit (GRU)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Replace both state vectors with a single vector h(t-1)
• Introduce a single gate controller to control both forget and input gate: whenever a

memory must be stored, the location where it will be stored should first be erased
• There is no output gate: a new gate controller controls which part of the previous

state will be shown to the main layer

Cho et al. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

54/38

Practical 5

55/38

Your task: Learning objectives
- The basics of CNNs
- Implementation of two building blocks in CNNs – convolutional and pooling layers
with Keras and TensorFlow
- Application of CNNs to image analysis
- Classification of images from two popular image datasets
- Assignment: Build a CNN model to classify digits in the MNIST dataset and compare
the results to other ML models (e.g., from previous practicals)

56/38

Practical 5 Logistics

- Data and code for Practical 5 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical5)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline
(Thursday 26 November, 4pm)

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical5

57/38

